This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.

© IGCSE is the registered trademark of Cambridge International Examinations.
NOTES ABOUT MARK SCHEME SYMBOLS & OTHER MATTERS

B marks are independent marks, which do not depend on other marks. For a B mark to be scored, the point to which it refers must be seen specifically in the candidate’s answer.

M marks are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers must be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.

C marks are compensatory marks which can be scored even if the points to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows he knew the equation, then the C mark is scored.

A marks are accuracy or answer marks which either depend on an M mark, or which are one of the ways which allow a C mark to be scored.

Brackets () around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets, e.g. 10(J) means that the mark is scored for 10, regardless of the unit given.

c.a.o. means “correct answer only”.

e.c.f. means “error carried forward”. This indicates that if a candidate has made an earlier mistake and has carried his incorrect value forward to subsequent stages of working, he may be given marks indicated by e.c.f. provided his subsequent working is correct, bearing in mind his earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but only applies to marks annotated “e.c.f.”

e.e.o.o. means “each error or omission”.

owtte means “or words to that effect”.

Underlining indicates that this must be seen in the answer offered, or something very similar.

OR/or indicates alternative answers, any one of which is satisfactory for scoring the mark.

AND indicates that both answers are required to score the mark.

Spelling Be generous with spelling and use of English. However, do not allow ambiguities, e.g. spelling which suggests confusion between reflection/refraction/diffraction or thermistor/transistor/transformer.

Sig. figs. On this paper, answers are generally acceptable to any number of significant figures ≥ 2, except where the mark scheme specifies otherwise or gives an answer to only 1 significant figure.

Units Deduct one mark for each incorrect or missing unit from an answer that would otherwise gain all the marks available for that answer: maximum 1 per question.

Fractions Fractions are only acceptable where specified.
Extras

If a candidate gives more answers than required, irrelevant extras are ignored; for extras which contradict an otherwise correct response, or are forbidden by the mark scheme, use right plus wrong = 0.

Ignore

indicates that something which is not correct is disregarded and does not cause a right plus wrong penalty.

NOT

indicates that an incorrect answer is not to be disregarded, but cancels another otherwise correct alternative offered by the candidate, i.e. right plus wrong penalty applies.
1 (a) dots farther apart (in 2nd time interval) owtte B1

(b) (i) (average speed =) \(d \div t \), in any form, e.g. words, symbols, numbers C1

\(0.095 \text{ m/s} \) A1

(ii) (average speed =) 0.29 m/s B1

(c) \((a =) (v - u) \div t\) C1

\(= (\text{candidate's (b)(ii) - candidate's (b)(i)}) + 0.02\) C1

Correct value calculated from candidate's values in (b)(i)(ii), expect 9.5 m/s² A1

2 (a) \(p_1V_1 = p_2V_2 \) in any form OR \((p_1 =) p_2V_2 \div V_1\) C1

\(p_1 \times 470 = 800 \times 60 \) OR \((p_1 =) 800 \times 60 \div 470\) C1

102 OR 100 kPa A1

(b) molecules would move faster/have more KE B1

more (frequent)/harder collisions with walls/cylinder/piston B1

pressure increases B1

(c) use of \(p = F \div A \) in any form OR \((F =) pA\) C1

\(F = 4400 \text{ N} \) A1

3 (a) strain / elastic (potential) (energy) B1

(b) (i) \((KE =) \frac{1}{2}m v^2\) in any form C1

1200 J A1

(ii) \((G)PE (gained) = KE (lost)\) in any form C1

\((G)PE = mg h \) OR \(h = PE \div mg\) in any form C1

1.8 m e.c.f. from (b)(i) A1

(iii) friction with air OR air resistance OR thermal energy / heat produced/lost B1
(c) (i) limit of proportionality
 (ii) Hooke’s law

4 (a) box 2: Z measures p. d.
 box 4: X and Y are different materials.
 box 6: X and Y are electrical conductors.

(b) more sensitive OR thread moves more
 more (greater volume of) expansion

(c) not linear OR linearity worse/less
 correctly relates movement of thread to diameter of capillary

5 (a) (i) (number of complete) vibrations (of the strip) per second/unit time
 (ii) maximum displacement of end of strip from mid-position
 OR XY OR ZY OR XZ ÷ 2

(b) (i) \((t =) \frac{d}{v} \) OR \(2\frac{d}{v}\)
 \(0.20 \text{ s} \) OR \(0.2 \text{ s}\)
 \(0.60 \text{ s} \) OR \(0.6 \text{ s} \) c.a.o.

(c) (i) accept any value between \(1.0\) and \(9.9 \times 10^3 \text{ m/s}\)
 (ii) accept any value between \(1.0\) and \(9.9 \times 10^3 \text{ m/s}\)

(d) \(v = f\lambda\) in any form OR \(v + f\)
 correct evaluation from candidate’s (c)(i) with unit, expect \(0.016 \text{ m}\)

6 (a) (i) \(n = v_a + v_g\) in any form
 (ii) \(2.0 \times 10^8\) OR \(2 \times 10^8\) m/s

(b) (i) \(n = \sin(i) + \sin(r)\) OR \(\sin(r) = 1.5 \times \sin 41^\circ\)
 OR \(\sin^{-1}(r) = 0.98\)
 \((r =) 80^\circ\)
(ii) total (internal) reflection OR no refraction OR all light reflected

(c) some indication of multiple reflections in optical fibre, accept from diagram

appropriate further information,
e.g. endoscope OR looking/illuminating inside body

7 (a) brass: needle horizontal

magnet: needle vertical, N pole up

(b) (i) no forces/effect on needle

(ii) needle aligns with field OR N or S pole attracted along field line or to (magnetic) S or N
NOT points to N of Earth

(c) steel, accept cobalt, nickel, ferrite, Magnadur, Alnico
NOT iron

8 (a) energy transferred per coulomb/unit charge
OR energy supplied in driving coulomb/unit charge around a circuit
ACCEPT p.d./voltage across battery/power supply

(b) (i) \(V = IR \) in any form OR \((I =) V + R \)

\[2.0 \text{ A OR } 2 \text{ A} \]

(ii) electrons

(iii) arrow right to left by heater OR indication of clockwise

(c) \((E =) VIt \) OR \(V^2/tR \) OR \(I^2Rt \) in any form

\[14000 \text{ J} \]

9 (a) (i) electromagnetic induction OR mutual induction

(ii) copper

\[\text{good conductivity OR good conductor} \]

(b) (i) \(N_p + N_s = V_p + V_s \) in any form OR \(N_p \) \(V_s + V_p \)
accept in ratio format

\[400 \]
(ii) \((\text{current in secondary } =) 4 \times 1.5 \text{ OR } 6.0 (\text{A})\)
\(I_P V_P = I_S V_S \text{ in any form OR } I_S V_S + V_P\)
0.30 \text{ OR } 0.3 \text{ A}
C1

10 \(a\) 2 protons and 2 neutrons \text{ OR } \text{helium nucleus}
B1

\(b\) \(\alpha\) in direction of field \text{ OR } \alpha \text{ towards negative (plate)} \
\text{OR } \beta \text{ in opposite direction to field OR } \beta \text{ towards positive (plate)} \
\text{OR } \alpha \text{ and } \beta \text{ deflected in opposite directions} \
\alpha \text{ in direction of field OR } \alpha \text{ towards negative (plate)}
\text{AND} \
\beta \text{ in opposite direction to field OR } \beta \text{ towards positive (plate)}
A1

\(c\) not deflected
B1

\(d\) versions \text{ of } \text{same element} \
(isotopes of same element have) same proton number/number of protons/atomic number/\(Z\) \
(isotopes of same element have) different nucleon numbers/ number of neutrons/mass number/\(A\) \
B1

11 \(a\) \(i\) (function of cathode is) to emit/produce electrons
B1

\(ii\) 4th box: vacuum
B1

\(b\) \(i\) B: box 3 \text{ no voltage between X-plates}
B: box 4 \text{ voltage plate } Y_1 > \text{ voltage plate } Y_2
C: box 2 \text{ voltage plate } X_1 < \text{ voltage plate } X_2
\text{AND} \text{ box 4 voltage plate } Y_1 > \text{ than voltage plate } Y_2
B1

\(ii\) no voltage between X plates so no horizontal deflection \text{ AND} \
beam attracted upwards to higher \(V / Y_1\) \text{ OR other correct argument}
B1