MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/21 Paper 2 (Paper 2), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.
Abbreviations

- **awrt**: answers which round to
- **cao**: correct answer only
- **dep**: dependent
- **FT**: follow through after error
- **isw**: ignore subsequent working
- **oe**: or equivalent
- **rot**: rounded or truncated
- **SC**: Special Case
- **soi**: seen or implied
- **www**: without wrong working

1 (a)

\[
\frac{\log_3 x}{\log_3 27} = \frac{\log_3 x}{3} \quad \text{isw}
\]

- **M1**: Can use other interim bases if all correct but M1 when in base 3 only
- **A1**: NOT \(\log_3 x+3 \)

1 (b)

- **M1**: \(\log_a 15 - \log_3 3 = \log_a 5 \) soi
- **M1**: \(\log_a 5^3 \) or \(\log_a a \)
- **A1**: \(\log_a y = \log_a 125a \Rightarrow y = 125a \)

2 (a)

\[f(x) = 2x - 4 \quad \text{and} \quad [f(x)] = -2x + 4 \]

- **B1, B1**: Condone \(y = \ldots \)

2 (b)

- **B1**: correct shape; \(y \) intercept marked or seen nearby;
- **B1**: intent to tend to \(y = 3 \) (i.e. not tending to or cutting \(x \)-axis)

3 (a)

\[
A = \frac{1}{4} \begin{bmatrix} 51 & -8 & 19 \\ 31 & 2 & 65 \end{bmatrix} - \begin{bmatrix} 20 & 0 & -5 \\ 15 & -10 & 25 \end{bmatrix}
\]

- **M1**: Integer values

3 (b)

- **B1**: The (total) value of the stock in **each** of the 3 shops
- **B1**: Must have “each” oe
- **B1**: The **total** value of the stock in all 3 shops
- **B1**: Must have “total” oe
| 4 | **(i)** | \(PT = \frac{1}{8} \tan \left(\frac{3\pi}{8} \right) \) oe | M1 | \(PT = \frac{3\pi}{8} \) \(\sin \frac{3\pi}{8} = \frac{8}{\sin \frac{\pi}{8}} \) |
| | **(ii)** | \(\frac{1}{2} \times 8^2 \times \frac{3\pi}{4} \) oe \((75.4) \) | M1 | \(8 \times \text{their } PT \) \(- \) their sector oe \((=154.5 \text{ to } 75.4') \) |
| | | \(8 \tan \left(\frac{3\pi}{8} \right) \times 8 \text{ – their sector } \) oe \((=154.5 \text{ to } 75.4') \) | M1 | awrt 19.3 |
| | **(iii)** | \(8 \left(\frac{3\pi}{4} \right) \) oe \((18.8) \) | M1 | awrt 79.1 |
| | | \(6\pi + 16 \tan \left(\frac{3\pi}{8} \right) \) = 57.5 | M1 | Accept 57.4 to 57.5 |

5	**(a)**	Permutation because the order matters oe	B1	
	(b) (i)	\(^6C_4 + ^5C_4 + ^7C_4 \)	M1	3 correct terms added
		55	A1	
	(ii)	\(^2C_1 \times ^6C_1 \times ^5C_1 \times ^7C_1 \)	M1	4 correct terms multiplied
		420	A1	
	(iii)	\(^6C_1 \times ^2C_1 \) or \(^2C_2 \times ^5C_1 \times ^6C_1 \) summation	M1	
		70	A1	for either correct product
				adding two correct products
				If 0 scored, then SC1 for 1,1,1,0 and 0,0,2,1 seen

6	**(i)**	\(2t^2 - 14t + 12 = 0 \) \((t-1)(t-6) \) oe	M1	
		\((t=) 1 \)	A1	If \(t = 1 \) with no working, then M1A1
	(ii)	\(\int (2t^2 - 14t + 12) \, dt \)	M1	
		\((s=) \frac{2t^3}{3} - \frac{14t^2}{2} + 12t \)	A2,1,0	\(-1 \) for each error or for \(+c \) left in or limits introduced
	(iii)	\(\frac{dv}{dt} (4t-14) \) \([4(3)-14 =] \) -2 cao	M1	
7 (a) \(\overrightarrow{AB} = 15\mathbf{b} - 5\mathbf{a} = 5(3\mathbf{b} - \mathbf{a}) \) or
\(\overrightarrow{BC} = 24\mathbf{b} - 3\mathbf{a} - 15\mathbf{b} = 3(3\mathbf{b} - \mathbf{a}) \) or
\(\overrightarrow{AC} = 24\mathbf{b} - 3\mathbf{a} - 5\mathbf{a} = 8(3\mathbf{b} - \mathbf{a}) \)
Comment: e.g. the vectors are scalar multiples of each other AND they have a common point (A, B or C as appropriate)
B1dep Dep on both B marks being awarded.

(b) (i) \(2\mathbf{i} + 11\mathbf{j} \) soi
\(\Rightarrow \sqrt{2^2 + 11^2} \)
\(\sqrt{125} \) or \(5\sqrt{5} \) or 11.2 (3 s.f.) or better
B1fT ft their \(2\mathbf{i} + 11\mathbf{j} \) (not \(\overrightarrow{OP} \) or \(\overrightarrow{OQ} \))

(ii) \(\frac{1}{5\sqrt{5}} (2\mathbf{i} + 11\mathbf{j}) \) isw
B1fT ft their answers from (i)

(iii) \(\frac{\mathbf{i} - 4\mathbf{j} + 3\mathbf{i} + 7\mathbf{j}}{2} \) or \(\frac{2\mathbf{i} + 11\mathbf{j}}{2} \) or
\(3\mathbf{i} + 7\mathbf{j} - \frac{2\mathbf{i} + 11\mathbf{j}}{2} \)
\(2\mathbf{i} + 1.5\mathbf{j} \)
A1

8 (a) (i) \(ke^{4x+3} (+c) \) oe
\(k = \frac{1}{4} \) oe
M1 any constant, non-zero \(k \)
A1

(ii) \(\frac{1}{4} (e^{4x+3} - e^{4(2.5)+3}) \) or better
DM1 ft their integral attempt

\(706650.99... = 707000 \) to 3 sf or better
A1 Accept \(\frac{1}{4}(e^5 - e^3) \)

(b) (i) \(k \sin\left(\frac{x}{3}\right) (+c) \)
\(k = 3 \)
M1 any constant, non-zero \(k \)
A1

(ii) \(3\sin\left(\frac{\pi}{6} \times \frac{1}{3}\right) - 3\sin(0) \)
DM1 Dep on their integral attempt in sin; condone omission of lower limit

\(0.520944... = 0.521 \) to 3 sf or better
A1 Accept \(3\sin\left(\frac{\pi}{18}\right) \)

(c) \(\int (x^2 + 2 + x^3) \, dx = \frac{x^4}{4} + 2x + \frac{x^4}{3} + c \)
B1 Expands – accept unsimplified
M1 integration of their 3 term expansion
A1 Fully correct
B1 \(+ c \)
Question 9

(a)

\[(4x-1)(x+5) \leq 0\]

Critical values \(x = \frac{1}{4}\) and \(-5\) soi

\[-5 \leq x \leq \frac{1}{4}\]

Solves quadratic

A1

Accept: \([-5, \frac{1}{4}]\); \(-5 \leq x \leq 0.25\)

(b)

(i) \((x+4)^2 - 25\) or \(a = 4\) and \(b = -25\)

B1, B1

(ii) \((\text{Greatest value}) = 25\)

\(x = -4\)

Must be clear

B1

Correct shape with maximum in second quadrant and crossing positive and negative axes correctly

B1

All 3 intercepts correctly shown on graph

Question 10

(i)

\[\ln y = \ln (Ab^x) \Rightarrow \ln y = \ln A + \ln b^x\]

\[\Rightarrow \ln y = \ln A + x \ln b\]

M1

A1

(ii)

\[\ln A = 11.4 \Rightarrow A = e^{11.4}\]

M1

condone misread of scale for M1 (11.2 only)

A1

Allow awrt \(-1\)

(iii)

\[x = 2.5 \Rightarrow \ln y = 9\]

\[y = e^9\] or 8000 to 1 sf

M1

A1

Allow awrt 8100

Question 11

(i)

\[7 - x, x, 6 - x\] \(\text{oe}\)

\(\text{their} \) attempt at \(7 - x + x + 6 - x + 16 = 25 \text{ oe}\)

\[x = 4\]

B1

M1

Condone \(x = 4\) for all 3 marks

(ii)

\[23 - y, y, 9 - y \text{ oe}\]

\[48 = 30 + 25 + 15 - 7 - 6 - \text{(their} 4 + y\text{)} + \text{their} 4\]

\[\text{oe soi}\]

\[y = 9\]

B1

or \(n(A \cup C) = 48 - 16 = 32\)

M1

or \(32 = 30 + 15 - \text{(their} 4 + y\text{)}\)

or \(48 = (23 - y) + 3 + 16 + y + 4 + 2 + (9 - y)\)

Condone \(y = 9\) for all 3 marks

(iii)

\(n(C) = 15\) and \(y + n(B \cap C) = 9 + 6 = 15\)

[and so \(A' \cap B' \cap C = \emptyset\)].

B1

or equivalent deduction