This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.
Abbreviations

- **awrt**: answers which round to
- **cao**: correct answer only
- **dep**: dependent
- **FT**: follow through after error
- **isw**: ignore subsequent working
- **oe**: or equivalent
- **rot**: rounded or truncated
- **SC**: Special Case
- **soi**: seen or implied
- **www**: without or wrong working

Question 1

(i) \[180^\circ \text{ or } \pi \text{ radians or 3.14 radians (or better)}\]

(ii) 2

(iii) (a)

(b) ![Graph](image)

(iv) 3

Question 2

(i) \[
\tan \theta = \frac{8 + 5\sqrt{2}}{4 + 3\sqrt{2}} \left(4 - 3\sqrt{2}\right)\\
= \frac{32 - 24\sqrt{2} + 20\sqrt{2} - 30}{16 - 18}\\
= 1 + 2\sqrt{2} \text{ (cao)}
\]

Mark Scheme

<table>
<thead>
<tr>
<th>Question</th>
<th>Mark</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (i)</td>
<td>B1</td>
<td>180° or π radians or 3.14 radians (or better)</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>y = \sin 2x \ all correct</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>for either [\uparrow\downarrow\uparrow] starting at their highest value and ending at their lowest value</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>Or a curve with highest value at (y = 3) and lowest value at (y = -1)</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>completely correct graph</td>
</tr>
<tr>
<td>2 (i)</td>
<td>M1</td>
<td>attempt to obtain (\tan \theta) and rationalise. Must be convinced that no calculators are being used</td>
</tr>
<tr>
<td></td>
<td>A1</td>
<td></td>
</tr>
</tbody>
</table>
(ii) \[
\sec^2 \theta = 1 + \tan^2 \theta \\
= 1 + (1 + 2\sqrt{2})^2 \\
= 1 + 1 - 4\sqrt{2} + 8 \\
= 10 - 4\sqrt{2}
\]

Alternative solution:
\[
AC^2 = (4 + 3\sqrt{2})^2 + (8 + 5\sqrt{2})^2 \\
= 148 + 104\sqrt{2}
\]
\[
\sec^2 \theta = \frac{148 + 104\sqrt{2}}{(4 + 3\sqrt{2})^2} \\
= \frac{148 + 104\sqrt{2}}{(4 + 3\sqrt{2})} \times \frac{34 - 24\sqrt{2}}{34 - 24\sqrt{2}} \\
= 10 - 4\sqrt{2}
\]

3 (i)	\[64 + 192x^2 + 240x^4 + 160x^6\]	B3,1,0	\(-1\) each error
(ii)	\[(64 + 192x^2 + 240x^4)\left(1 - \frac{6}{x^2} + \frac{9}{x^4}\right)\]	B1	expansion of \(\left(1 - \frac{3}{x^2}\right)^2\)
	Terms needed \(64 - (192 \times 6) + (240 \times 9)\)	M1	attempt to obtain 2 or 3 terms using their (i)
	= 1072	A1	

© Cambridge International Examinations 2015
4 (a) \[X^2 = \begin{pmatrix} 4 & -4k \\ 2k & -4k \end{pmatrix} \]

(b) Use of \(\mathbf{A}^{-1} = \mathbf{I} \)

\[
\begin{pmatrix} a & 1 \\ b & 5 \end{pmatrix} \begin{pmatrix} 5 & -1 \\ 6 & -6 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

Any 2 equations will give \(a = 2, b = 4 \)

Alternative method 1:

\[
\frac{1}{5a-b} \begin{pmatrix} a & 1 \\ b & 5 \end{pmatrix} = \begin{pmatrix} 5 & -1 \\ 6 & -6 \end{pmatrix}
\]

Compare any 2 terms to give \(a = 2, b = 4 \)

Alternative method 2:

Inverse of \(\begin{pmatrix} 5 & -1 \\ 6 & -4 \end{pmatrix} \) = \(\begin{pmatrix} 2 & 1 \\ 4 & 5 \end{pmatrix} \)

5

\[3x - 1 = x(3x - 1) + x^2 - 4 \text{ or } \]

\[y = \left(\frac{y+1}{3} \right)y + \left(\frac{y+1}{3} \right)^2 - 4 \]

\[4x^2 - 4x - 3 = 0 \text{ or } 4y^2 - 4y - 35 = 0 \]

\[(2x - 3)(2x + 1) = 0 \text{ or } (2y - 7)(2y + 5) = 0 \]

leading to \(x = \frac{3}{2} \), \(x = -\frac{1}{2} \) and

\(y = \frac{7}{2} \), \(y = -\frac{5}{2} \)

Midpoint \(\left(\frac{1}{2}, \frac{1}{2} \right) \)

Perpendicular gradient = \(-\frac{1}{3} \)

Perp bisector: \(y - \frac{1}{2} = -\frac{1}{3} \left(x - \frac{1}{2} \right) \)

\((3y + x - 2 = 0) \)
6 (i) \[f\left(\frac{1}{2}\right) = a - \frac{15}{4} + b - 2 = 0 \]
leading to \(a + 4b = 46 \)
\[f(1) = a - 15 + b - 2 = 5 \]
leading to \(a + b = 22 \)
giving \(b = 8 \) (AG), \(a = 14 \)

(ii) \((2x - 1)(7x^2 - 4x + 2) \)

(iii) \(7x^2 - 4x + 2 = 0 \) has no real solutions as \(b^2 < 4ac \)
\[16 < 56 \]

7 (i) \[\frac{dy}{dx} = \frac{(x-1) \cdot \frac{8x}{4x^2 + 2} - \ln(4x^2 + 3)}{(x-1)^2} \]

When \(x = 0 \), \(y = -\ln 3 \) \(\text{oe} \)
\[\frac{dy}{dx} = -\ln 3 \] so gradient of normal is \(\frac{1}{\ln 3} \)
(allow numerical equivalent)

normal equation \(y + \ln 3 = \frac{1}{\ln 3} x \)
or \(y = 0.910x - 1.10 \), or \(y = \frac{10}{11} x - \frac{11}{10} \) \(\text{cao} \)
(Allow \(y = 0.91x - 1.1 \))

(ii) when \(x = 0 \), \(y = -\ln 3 \)
when \(y = 0 \), \(x = (\ln 3)^3 \)
Area = \(\pm 0.66 \) or \(\pm 0.67 \) or awrt these
or \(\frac{1}{2} (\ln 3)^3 \)
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
|8 | (i) | Range for f: \(y \geq 3 \)
Range for g: \(y \geq 9 \) | B1
B1 |
| | (ii) |
\[x = -2 + \sqrt{y - 5} \]
\[g^{-1}(x) = -2 + \sqrt{x - 5} \]
Domain of \(g^{-1} \): \(x \geq 9 \) | M1
A1
B1 |
| | | | attempt to obtain the inverse function
A1 Must be correct form
B1 for domain |
| | Alternative method: |
\[y^2 + 4y + 9 - x = 0 \]
\[y = \frac{-4 + \sqrt{16 - 4(9-x)}}{2} \] | M1
A1
A1 |
| | | | attempt to use quadratic formula and find inverse
A1 must have + not ± |
| | (iii) | Need \(g(3e^{2x}) \)
\[(3e^{2x} + 2)^2 + 5 = 41 \]
or \[9e^{4x} + 12e^{2x} - 32 = 0 \]
\[(3e^{2x} - 4)(3e^{2x} + 8) = 0 \]
leading to \(3e^{2x} + 2 = \pm 6 \) so \(x = \frac{1}{2} \ln \frac{4}{3} \)
or \(e^{2x} = \frac{4}{3} \) so \(x = \frac{1}{2} \ln \frac{4}{3} \) | M1
DM1
M1
A1
A1 |
| | | | M1 dealing with the exponential correctly in order to reach a solution for \(x \)
A1 Allow equivalent logarithmic forms |
| | Alternative method: | Using \(f(x) = g^{-1}(41) \), \(g^{-1}(41) = 4 \)
leading to \(3e^{2x} = 4 \), so \(x = \frac{1}{2} \ln \frac{4}{3} \) | M1
DM1
M1
A1
A1 |
| | | | M1 dealing with \(g^{-1}(41) \) to obtain an equation in terms of \(e^{2x} \)
M1 dealing with the exponential correctly in order to reach a solution for \(x \)
Allow equivalent logarithmic forms |
| | (iv) | \(g'(x) = 6e^{2x} \)
\(g' (\ln 4) = 96 \) | B1
B1 |
| | | | B1 for each |
9 (i) \[
\frac{dy}{dx} = 3x^2 - 10x + 3
\]
When \(x = 0\), for curve \(\frac{dy}{dx} = 3\),
gradient of line also 3 so line is a tangent.

Alternate method:
\[
3x + 10 = x^3 - 5x^2 + 3x + 10
\]
leading to \(x^2 = 0\), so tangent at \(x = 0\)

(ii) When \(\frac{dy}{dx} = 0\), \((3x - 1)(x - 3) = 0\)
\[
x = \frac{1}{3}, \ x = 3
\]

(iii) Area = \[
\frac{1}{2} (10 + 19) 3 - \int_{0}^{3} (x^3 - 5x^2 + 3x + 10) \ dx
\]
\[
= \frac{87}{2} \left[\frac{x^4}{4} - \frac{5x^3}{3} + \frac{3x^2}{2} + 10x \right]_0
\]
\[
= \frac{87}{2} \left(\frac{81}{4} - 45 + \frac{27}{2} + 30 \right)
\]
\[
= 24.7 \text{ or } 24.8
\]

Alternative method:
Area = \[
\int_{0}^{3} (3x + 10) - (x^3 - 5x^2 + 3x + 10) \ dx
\]
\[
= \int_{0}^{3} -x^3 + 5x^2 \ dx
\]
\[
= \left[\frac{x^4}{4} + \frac{5x^3}{3} \right]_0^{99} = \frac{99}{4}
\]

10 (a) \[
\sin^2 x = \frac{1}{4}
\]
\[
\sin x = (\pm) \frac{1}{2}
\]
\[
x = 30^\circ, 150^\circ, 210^\circ, 330^\circ
\]

© Cambridge International Examinations 2015
(b)

\[
\left(\sec^2 3y - 1 \right) - 2 \sec 3y = -2 = 0
\]

\[
\sec^2 3y - 2 \sec 3y - 3 = 0
\]

\[
(\sec 3y + 1)(\sec 3y - 3) = 0
\]

leading to \(\cos 3y = -1, \cos 3y = \frac{1}{3} \)

\(3y = 180^\circ, 540^\circ \quad 3y = 70.5^\circ, 289.5^\circ, 430.5^\circ \)

\(y = 60^\circ, 180^\circ, 23.5^\circ, 96.5^\circ, 143.5^\circ \)

Alternative 1:

\[
\sec^2 3y - 2 \sec 3y - 3 = 0
\]

leading to \(3 \cos^2 3y + 2 \cos 3y - 1 \)

\[
(3 \cos 3y - 1)(\cos 3y + 1) = 0
\]

Alternative 2:

\[
\frac{\sin^2 y}{\cos^2 y} - 2 \frac{\sin y}{\cos y} - 2 = 0
\]

\[
(1 - \cos^2 x) - 2 \cos x - 2 \cos^2 x = 0
\]

(c)

\[
\frac{\pi}{3} = \frac{4\pi}{3} = \frac{2\pi}{3} = \frac{5\pi}{3}
\]

\[
z = \frac{2\pi}{3}, \frac{5\pi}{3} \quad \text{or} \quad 2.09 \quad 2.1, 5.24
\]

M1	use of the correct identity
M1	attempt to obtain a 3 term quadratic equation in sec 3y and attempt to solve
M1	dealing with sec and 3y correctly

A1, A1

A1 for a correct pair, A1 for a second correct pair, A1 for correct 5th solution and no other within the range

M1	use of the correct identity
M1	attempt to obtain a quadratic equation in cos 3y and attempt to solve
M1	dealing with 3y correctly
A marks as above	

M1

use of the correct identity,
\[
\tan y = \frac{\sin y}{\cos y} \quad \text{and} \quad \sec y = \frac{1}{\cos y}
\]

as before

| M1 | correct order of operations |

A1, A1

A1 for a correct solution
A1 for a second correct solution and no other within the range