SYLLABUS

Cambridge IGCSE™
Combined Science
0653

For examination in June and November 2019, 2020 and 2021. Also available for examination in March 2019, 2020 and 2021 for India only.
What has changed in Cambridge IGCSE Combined Science 0653 for 2019, 2020 and 2021?

The syllabus has been revised for first examination in 2019. Some changes are significant.

You are strongly advised to read the whole syllabus before planning your teaching programme.

Changes in version 4 of the syllabus, published December 2018
We have clarified the information about the grades available for Core and Extended tier assessment.

• The information has been clarified in section 3 Syllabus overview and section 6 Practical assessment

Changes in version 3 of the syllabus, published September 2017
Combining this with other syllabuses
Candidates cannot take Cambridge IGCSE (9–1) Biology (0970), Cambridge IGCSE (9–1) Chemistry (0971), Cambridge IGCSE (9–1) Physics (0972) or Cambridge IGCSE (9–1) Co-ordinated Sciences (Double Award) (0973) with this syllabus.

Section 5. Syllabus content
The spelling of ‘molecules’ has been corrected in P3.1.2 on page 40 of the syllabus.

Changes in version 2 of the syllabus, published January 2017
A correction has been made to page 23 of the syllabus in section B9.2. The heading in B9.2 now reads ‘Tropic responses’.

Changes in version 1 of the syllabus, published September 2016
Section 5. Syllabus content
The syllabus content has been completely revised, updated and reorganised to align with the single Science syllabuses (Cambridge IGCSE Biology 0610, Cambridge IGCSE Chemistry 0620 and Cambridge IGCSE Physics 0625).

Section 7. Appendix
The appendix has been revised, updated and reorganised to align with the single Science syllabuses (Cambridge IGCSE Biology 0610, Cambridge IGCSE Chemistry 0620 and Cambridge IGCSE Physics 0625).

Significant changes to the appendix are indicated by black vertical lines either side of the text.

Changes to assessment

• Paper 5, Practical Test, 1 hour 15 minutes, 40 marks
 – The number of marks for Paper 5 Practical Test is now 40 marks.
 – The duration of Paper 5 Practical Test is now 1 hour 15 minutes.

Paper 5: Practical Test will now typically consist of 4 exercises, only 3 of which will require the use of apparatus.
One question on Paper 5 will assess the skill of planning. This question will be based on any one of the sciences, which could be: Biology, Chemistry or Physics and may vary between each examination series.

• Paper 6, Alternative to Practical, 1 hour, 40 marks
 – The number of marks for Paper 6 Alternative to Practical is now 40 marks.
 – The duration of Paper 6 Alternative to Practical is unchanged.

One question on Paper 6 will assess the skill of planning. This question will be based on any one of the sciences, which could be: Biology, Chemistry or Physics and may vary between each examination series.

Significant changes to the assessment are indicated by black vertical lines either side of the text.

In addition to reading the syllabus, teachers should refer to the updated specimen papers.
Contents

1. Introduction ..2
 1.1 Why choose Cambridge?
 1.2 Why choose Cambridge IGCSE?
 1.3 Why choose Cambridge IGCSE Combined Science?
 1.4 Cambridge ICE (International Certificate of Education)
 1.5 How can I find out more?

2. Teacher support ..5
 2.1 Support materials
 2.2 Endorsed resources
 2.3 Training

3. Syllabus overview ...6
 3.1 Content
 3.2 Assessment

4. Syllabus aims and assessment objectives ...10
 4.1 Syllabus aims
 4.2 Assessment objectives
 4.3 Relationship between assessment objectives and components
 4.4 Grade descriptions
 4.5 Conventions (e.g. signs, symbols, terminology and nomenclature)

5. Syllabus content ...15

6. Practical assessment ..46
 6.1 Teaching experimental skills
 6.2 Description of Components, Paper 5: Practical Test and Paper 6: Alternative to Practical

7. Appendix ...51
 7.1 Electrical symbols
 7.2 Symbols and units for physical quantities
 7.3 Notes for use in qualitative analysis
 7.4 The Periodic Table
 7.5 Safety in the laboratory
 7.6 Glossary of terms used in science papers
 7.7 Mathematical requirements
 7.8 Presentation of data
 7.9 ICT opportunities

8. Other information ...61
1. Introduction

1.1 Why choose Cambridge?

Cambridge International Examinations prepares school students for life, helping them develop an informed curiosity and a lasting passion for learning. We are part of Cambridge Assessment, a department of the University of Cambridge.

Our international qualifications are recognised by the world’s best universities and employers, giving students a wide range of options in their education and career. As a not-for-profit organisation, we devote our resources to delivering high-quality educational programmes that can unlock learners’ potential.

Our programmes and qualifications set the global standard for international education. They are created by subject experts, rooted in academic rigour and reflect the latest educational research. They provide a strong platform for learners to progress from one stage to the next, and are well supported by teaching and learning resources.

Every year, nearly a million Cambridge learners from 10000 schools in 160 countries prepare for their future with an international education from Cambridge.

Cambridge learners

Our mission is to provide educational benefit through provision of international programmes and qualifications for school education and to be the world leader in this field. Together with schools, we develop Cambridge learners who are:

- confident in working with information and ideas – their own and those of others
- responsible for themselves, responsive to and respectful of others
- reflective as learners, developing their ability to learn
- innovative and equipped for new and future challenges
- engaged intellectually and socially, ready to make a difference.

Recognition

Cambridge IGCSE is recognised by leading universities and employers worldwide, and is an international passport to progression and success. It provides a solid foundation for moving on to higher level studies. Learn more at www.cie.org.uk/recognition

Support for teachers

A wide range of materials and resources is available to support teachers and learners in Cambridge schools. Resources suit a variety of teaching methods in different international contexts. Through subject discussion forums and training, teachers can access the expert advice they need for teaching our qualifications. More details can be found in Section 2 of this syllabus and at www.cie.org.uk/teachers

Support for exams officers

Exams officers can trust in reliable, efficient administration of exams entries and excellent personal support from our customer services. Learn more at www.cie.org.uk/examsofficers
Our systems for managing the provision of international qualifications and education programmes for learners aged 5 to 19 are certified as meeting the internationally recognised standard for quality management, ISO 9001:2008. Learn more at www.cie.org.uk/ISO9001

1.2 Why choose Cambridge IGCSE?

Cambridge IGCSEs are international in outlook, but retain a local relevance. The syllabuses provide opportunities for contextualised learning and the content has been created to suit a wide variety of schools, avoid cultural bias and develop essential lifelong skills, including creative thinking and problem-solving.

Our aim is to balance knowledge, understanding and skills in our programmes and qualifications to enable students to become effective learners and to provide a solid foundation for their continuing educational journey.

Through our professional development courses and our support materials for Cambridge IGCSEs, we provide the tools to enable teachers to prepare learners to the best of their ability and work with us in the pursuit of excellence in education.

Cambridge IGCSEs are considered to be an excellent preparation for Cambridge International AS & A Levels, the Cambridge AICE (Advanced International Certificate of Education) Diploma, Cambridge Pre-U, and other education programmes, such as the US Advanced Placement program and the International Baccalaureate Diploma programme. Learn more about Cambridge IGCSEs at www.cie.org.uk/cambridgesecondary2

Guided learning hours

Cambridge IGCSE syllabuses are designed on the assumption that learners have about 130 guided learning hours per subject over the duration of the course, but this is for guidance only. The number of hours required to gain the qualification may vary according to local curricular practice and the learners’ prior experience of the subject.

1.3 Why choose Cambridge IGCSE Combined Science?

Cambridge IGCSE Combined Science gives learners the opportunity to study biology, chemistry and physics within a scientifically coherent syllabus and is accepted by universities and employers as proof of essential knowledge and ability.

As well as a subject focus, the Cambridge IGCSE Combined Science syllabus encourages learners to develop:

- a better understanding of the technological world, with an informed interest in scientific matters
- a recognition of the usefulness (and limitations) of scientific method, and how to apply this to other disciplines and in everyday life
- relevant attitudes, such as a concern for accuracy and precision, objectivity, integrity, enquiry, initiative and inventiveness
- an interest in, and care for, the environment
- a better understanding of the influence and limitations placed on scientific study by society, economy, technology, ethics, the community and the environment
- an understanding of the scientific skills essential for both further study and everyday life.
Prior learning

We recommend that learners who are beginning this course should previously have studied a science syllabus such as that of the Cambridge Lower Secondary Programme or equivalent national educational frameworks. Learners should also have adequate mathematical skills for the content contained in this syllabus (see the Mathematical requirements in section 7.7).

Progression

Cambridge IGCSEs are general qualifications that enable learners to progress either directly to employment, or to proceed to further qualifications.

1.4 Cambridge ICE (International Certificate of Education)

Cambridge ICE is a group award for Cambridge IGCSE. It gives schools the opportunity to benefit from offering a broad and balanced curriculum by recognising the achievements of learners who pass examinations in a number of different subjects.

Learn more about Cambridge ICE at www.cie.org.uk/cambridgesecondary2

1.5 How can I find out more?

If you are already a Cambridge school

You can make entries for this qualification through your usual channels. If you have any questions, please contact us at info@cie.org.uk

If you are not yet a Cambridge school

Learn about the benefits of becoming a Cambridge school at www.cie.org.uk/startcambridge. Email us at info@cie.org.uk to find out how your organisation can register to become a Cambridge school.
2. **Teacher support**

2.1 **Support materials**

You can go to our public website at www.cie.org.uk/igcse to download current and future syllabuses together with specimen papers or past question papers, examiner reports and grade threshold tables from one series.

For teachers at registered Cambridge schools a range of additional support materials for specific syllabuses is available from Teacher Support, our secure online support for Cambridge teachers. Go to https://teachers.cie.org.uk (username and password required). If you do not have access, speak to the Teacher Support coordinator at your school.

2.2 **Endorsed resources**

We work with publishers providing a range of resources for our syllabuses including print and digital materials. Resources endorsed by Cambridge go through a detailed quality assurance process to make sure they provide a high level of support for teachers and learners.

We have resource lists which can be filtered to show all resources, or just those which are endorsed by Cambridge. The resource lists include further suggestions for resources to support teaching. See www.cie.org.uk/i-want-to/resource-centre for further information.

2.3 **Training**

We offer a range of support activities for teachers to ensure they have the relevant knowledge and skills to deliver our qualifications. See www.cie.org.uk/events for further information.
3. Syllabus overview

3.1 Content

The syllabus content that follows is divided into three sections: Biology (B1–B12), Chemistry (C1–C12) and Physics (P1–P6). **Candidates must study all three sections.**

Candidates can either follow the Core syllabus only, or they can follow the Extended syllabus which includes both the Core and the Supplement. Candidates aiming for grades A* to C should follow the Extended syllabus.

It is important that, throughout this course, teachers should make candidates aware of the relevance of the concepts studied to everyday life, and to the natural and man-made worlds.

Biology
- B1. Characteristics of living organisms
- B2. Cells
- B3. Biological molecules
- B4. Enzymes
- B5. Plant nutrition
- B6. Animal nutrition
- B7. Transport
- B8. Gas exchange and respiration
- B9. Coordination and response
- B10. Reproduction
- B11. Organisms and their environment
- B12. Human influences on ecosystems

Chemistry
- C1. The particulate nature of matter
- C2. Experimental techniques
- C3. Atoms, elements and compounds
- C4. Stoichiometry
- C5. Electricity and chemistry
- C6. Energy changes in chemical reactions
- C7. Chemical reactions
- C8. Acids, bases and salts
- C9. The Periodic Table
- C10. Metals
- C11. Air and water
- C12. Organic chemistry
Physics

P1. Motion
P2. Work, energy and power
P3. Thermal Physics
P4. Properties of waves, including light and sound
P5. Electrical quantities
P6. Electric circuits
3.2 Assessment

All candidates must enter for three papers.

<table>
<thead>
<tr>
<th>Core candidates take:</th>
<th>Extended candidates take:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper 1 45 minutes</td>
<td>Paper 2 45 minutes</td>
</tr>
<tr>
<td>A multiple-choice paper consisting of 40 items of the four-choice type.</td>
<td>A multiple-choice paper consisting of 40 items of the four-choice type.</td>
</tr>
<tr>
<td>(This paper will test assessment objectives AO1 and AO2.) Questions will be based on</td>
<td>(This paper will test assessment objectives AO1 and AO2.) Questions will be based on the</td>
</tr>
<tr>
<td>the Core syllabus content.</td>
<td>Extended syllabus content (Core and Supplement).</td>
</tr>
<tr>
<td>40 marks</td>
<td>40 marks</td>
</tr>
<tr>
<td>This paper will be weighted at 30% of the final total mark.</td>
<td>This paper will be weighted at 30% of the final total mark.</td>
</tr>
<tr>
<td>Externally assessed.</td>
<td>Externally assessed.</td>
</tr>
</tbody>
</table>

and:

<table>
<thead>
<tr>
<th>Paper 3 1 hour 15 minutes</th>
<th>Paper 4 1 hour 15 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(This paper will test assessment objectives AO1 and AO2.) Questions will be based on</td>
<td>(This paper will test assessment objectives AO1 and AO2.) Questions will be based on the</td>
</tr>
<tr>
<td>the Core syllabus content.</td>
<td>Extended syllabus content (Core and Supplement).</td>
</tr>
<tr>
<td>80 marks</td>
<td>80 marks</td>
</tr>
<tr>
<td>This paper will be weighted at 50% of the final total mark.</td>
<td>This paper will be weighted at 50% of the final total mark.</td>
</tr>
<tr>
<td>Externally assessed.</td>
<td>Externally assessed.</td>
</tr>
</tbody>
</table>

All candidates take:

<table>
<thead>
<tr>
<th>either:</th>
<th>or:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper 5 1 hour 15 minutes</td>
<td>Paper 6 1 hour</td>
</tr>
<tr>
<td>Practical Test</td>
<td>Alternative to Practical</td>
</tr>
<tr>
<td>This paper will test assessment objective AO3.</td>
<td>This paper will test assessment objective AO3.</td>
</tr>
<tr>
<td>Questions will be based on the experimental skills in Section 6.</td>
<td>Questions will be based on the experimental skills in Section 6.</td>
</tr>
<tr>
<td>40 marks</td>
<td>40 marks</td>
</tr>
<tr>
<td>This paper will be weighted at 20% of the final total mark.</td>
<td>This paper will be weighted at 20% of the final total mark.</td>
</tr>
<tr>
<td>Externally assessed.</td>
<td>Externally assessed.</td>
</tr>
</tbody>
</table>
Candidates who have studied the Core syllabus content, or who are expected to achieve a grade D or below, should be entered for Paper 1, Paper 3 and either Paper 5 or Paper 6. These candidates will be eligible for grades C to G.

Candidates who have studied the Extended syllabus content (Core and Supplement), and who are expected to achieve a grade C or above, should be entered for Paper 2, Paper 4 and either Paper 5 or Paper 6. These candidates will be eligible for grades A* to G.

Availability
This syllabus is examined in the June and November examination series. This syllabus is also available for examination in March for India only.

This syllabus is available to private candidates.

Detailed timetables are available from www.cie.org.uk/timetables

Combining this with other syllabuses
Candidates can combine this syllabus in an examination series with any other Cambridge syllabus, except:

- 0610 Cambridge IGCSE Biology
- 0970 Cambridge IGCSE (9–1) Biology
- 0620 Cambridge IGCSE Chemistry
- 0971 Cambridge IGCSE (9–1) Chemistry
- 0625 Cambridge IGCSE Physics
- 0972 Cambridge IGCSE (9–1) Physics
- 0652 Cambridge IGCSE Physical Science
- 0654 Cambridge IGCSE Co-ordinated Sciences (Double Award)
- 0973 Cambridge IGCSE (9–1) Co-ordinated Sciences (Double Award)
- 5054 Cambridge O Level Physics
- 5070 Cambridge O Level Chemistry
- 5090 Cambridge O Level Biology
- 5129 Cambridge O Level Combined Science
- syllabuses with the same title at the same level.

Please note that Cambridge IGCSE, Cambridge IGCSE (9–1) (Level 1/Level 2 Certificate) and Cambridge O Level syllabuses are at the same level.
4. **Syllabus aims and assessment objectives**

4.1 **Syllabus aims**

The syllabus aims listed below describe the educational purposes of a course based on this syllabus. These aims are not intended as assessment criteria but outline the educational context in which the syllabus content should be viewed. These aims are the same for all learners and are not listed in order of priority. Some of these aims may be delivered by the use of suitable local, international or historical examples and applications, or through collaborative experimental work.

The aims are to:

- provide an enjoyable and worthwhile educational experience for all learners, whether or not they go on to study science beyond this level
- enable learners to acquire sufficient knowledge and understanding to:
 - become confident citizens in a technological world and develop an informed interest in scientific matters
 - be suitably prepared for studies beyond Cambridge IGCSE
- allow learners to recognise that science is evidence-based and understand the usefulness, and the limitations, of scientific method
- develop skills that:
 - are relevant to the study and practice of science
 - are useful in everyday life
 - encourage a systematic approach to problem-solving
 - encourage efficient and safe practice
 - encourage effective communication through the language of science
- develop attitudes relevant to science such as:
 - concern for accuracy and precision
 - objectivity
 - integrity
 - enquiry
 - initiative
 - inventiveness
- enable learners to appreciate that:
 - science is subject to social, economic, technological, ethical and cultural influences and limitations
 - the applications of science may be both beneficial and detrimental to the individual, the community and the environment.
4.2 Assessment objectives

AO1: Knowledge with understanding
Candidates should be able to demonstrate knowledge and understanding of:
- scientific phenomena, facts, laws, definitions, concepts and theories
- scientific vocabulary, terminology and conventions (including symbols, quantities and units)
- scientific instruments and apparatus, including techniques of operation and aspects of safety
- scientific and technological applications with their social, economic and environmental implications.

Syllabus content defines the factual material that candidates may be required to recall and explain. Candidates will also be asked questions which require them to apply this material to unfamiliar contexts and to apply knowledge from one area of the syllabus to another.

Questions testing this assessment objective will often begin with one of the following words: define, state, describe, explain (using your knowledge and understanding) or outline (see the Glossary of terms used in science papers in section 7.6).

AO2: Handling information and problem solving
Candidates should be able, in words or using other written forms of presentation (i.e. symbolic, graphical and numerical), to:
- locate, select, organise and present information from a variety of sources
- translate information from one form to another
- manipulate numerical and other data
- use information to identify patterns, report trends and draw inferences
- present reasoned explanations for phenomena, patterns and relationships
- make predictions and hypotheses
- solve problems, including some of a quantitative nature.

Questions testing these skills may be based on information that is unfamiliar to candidates, requiring them to apply the principles and concepts from the syllabus to a new situation, in a logical, deductive way.

Questions testing these skills will often begin with one of the following words: predict, suggest, calculate or determine (see the Glossary of terms used in science papers in section 7.6).

AO3: Experimental skills and investigations
Candidates should be able to:
- demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)
- plan experiments and investigations
- make and record observations, measurements and estimates
- interpret and evaluate experimental observations and data
- evaluate methods and suggest possible improvements.
4.3 Relationship between assessment objectives and components

The approximate weightings allocated to each of the assessment objectives are summarised in the table below.

<table>
<thead>
<tr>
<th>Assessment objective</th>
<th>Papers 1 and 2</th>
<th>Papers 3 and 4</th>
<th>Papers 5 and 6</th>
<th>Weighting of AO in overall qualification</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO1: Knowledge with understanding</td>
<td>63%</td>
<td>63%</td>
<td>–</td>
<td>50%</td>
</tr>
<tr>
<td>AO2: Handling information and problem solving</td>
<td>37%</td>
<td>37%</td>
<td>–</td>
<td>30%</td>
</tr>
<tr>
<td>AO3: Experimental skills and investigations</td>
<td>–</td>
<td>–</td>
<td>100%</td>
<td>20%</td>
</tr>
<tr>
<td>Weighting of paper in overall qualification</td>
<td>30%</td>
<td>50%</td>
<td>20%</td>
<td></td>
</tr>
</tbody>
</table>

4.4 Grade descriptions

The scheme of assessment is intended to encourage positive achievement by all candidates.

A Grade A candidate will be able to:

- recall and communicate precise knowledge and display comprehensive understanding of scientific phenomena, facts, laws, definitions, concepts and theories
- apply scientific concepts and theories to present reasoned explanations of familiar and unfamiliar phenomena, to solve complex problems involving several stages, and to make reasoned predictions and hypotheses
- communicate and present complex scientific ideas, observations and data clearly and logically, independently using scientific terminology and conventions consistently and correctly
- independently select, process and synthesise information presented in a variety of ways, and use it to draw valid conclusions and discuss the scientific, technological, social, economic and environmental implications
- devise strategies to solve problems in complex situations which may involve many variables or complex manipulation of data or ideas through multiple steps
- analyse data to identify any patterns or trends, taking account of limitations in the quality of the data and justifying the conclusions reached
- select, describe, justify and evaluate techniques for a large range of scientific operations and laboratory procedures.
A **Grade C** candidate will be able to:

- recall and communicate secure knowledge and understanding of scientific phenomena, facts, laws, definitions, concepts and theories
- apply scientific concepts and theories to present simple explanations of familiar and some unfamiliar phenomena, to solve straightforward problems involving several stages, and to make detailed predictions and simple hypotheses
- communicate and present scientific ideas, observations and data using a wide range of scientific terminology and conventions
- select and process information from a given source, and use it to draw simple conclusions and state the scientific, technological, social, economic or environmental implications
- solve problems involving more than one step, but with a limited range of variables or using familiar methods
- analyse data to identify a pattern or trend, and select appropriate data to justify a conclusion
- select, describe and evaluate techniques for a range of scientific operations and laboratory procedures.

A **Grade F** candidate will be able to:

- recall and communicate limited knowledge and understanding of scientific phenomena, facts, laws, definitions, concepts and theories
- apply a limited range of scientific facts and concepts to give basic explanations of familiar phenomena, to solve straightforward problems and to make simple predictions
- communicate and present simple scientific ideas, observations and data using a limited range of scientific terminology and conventions
- select a single piece of information from a given source, and use it to support a given conclusion, and to make links between scientific information and its scientific, technological, social, economic or environmental implications
- solve problems involving more than one step if structured help is given
- analyse data to identify a pattern or trend
- select, describe and evaluate techniques for a limited range of scientific operations and laboratory procedures.
4.5 Conventions (e.g. signs, symbols, terminology and nomenclature)

Syllabuses and question papers conform with generally accepted international practice. In particular, the following document, produced by the Association for Science Education (ASE), should be used as guidelines.

Litres/dm³

To avoid any confusion concerning the symbol for litre, dm³ will be used in place of 1 litre.

Decimal markers

In accordance with current ASE convention, decimal markers in examination papers will be a single dot on the line. Candidates are expected to follow this convention in their answers.

Numbers

Numbers from 1000 to 9999 will be printed without commas or spaces. Numbers greater than or equal to 10 000 will be printed without commas. A space will be left between each group of three whole numbers, e.g. 4 256 789.
5. **Syllabus content**

The syllabus content that follows is divided into three sections: Biology (B1–B12), Chemistry (C1–C12) and Physics (P1–P6). **Candidates must study all three sections.**

All candidates should be taught the Core syllabus content. Candidates who are only taught the Core syllabus content can achieve a maximum of grade C. Candidates aiming for grades A* to C should be taught the Extended syllabus content. The Extended syllabus content includes both the Core and the Supplement. Candidates should be made familiar with the information found in sections 7.1, 7.2, 7.3 and 7.4.

In delivering the course, teachers should aim to show the relevance of concepts to the learners’ everyday lives and to the world around them. The syllabus content has been designed so as to allow teachers to develop flexible programmes which meet all of the general aims of the syllabus while drawing on appropriate local and international contexts.

Scientific subjects are, by their nature, experimental. Wherever possible, learners should pursue a fully integrated course which allows them to develop their practical skills by carrying out practical work and investigations within all of the topics listed.

0653 Biology

B1 Characteristics of living organisms

<table>
<thead>
<tr>
<th>Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Describe the characteristics of living organisms by defining the terms:</td>
</tr>
<tr>
<td>- movement as an action by an organism causing a change of position or place</td>
</tr>
<tr>
<td>- respiration as the chemical reactions in cells that break down nutrient molecules and release energy</td>
</tr>
<tr>
<td>- sensitivity as the ability to detect and respond to changes in the environment</td>
</tr>
<tr>
<td>- growth as a permanent increase in size</td>
</tr>
<tr>
<td>- reproduction as the processes that make more of the same kind of organism</td>
</tr>
<tr>
<td>- excretion as removal from organisms of toxic materials and substances in excess of requirements</td>
</tr>
<tr>
<td>- nutrition as taking in of materials for energy, growth and development</td>
</tr>
</tbody>
</table>
B2 Cells

Core

1. State that living organisms are made of cells
2. Describe and compare the structure of a plant cell with an animal cell, as seen under a light microscope, limited to cell wall, nucleus, cytoplasm, chloroplasts, vacuoles and location of the cell membrane
3. State the functions of the structures seen under the light microscope in the plant cell and in the animal cell

5. Calculate magnification and size of biological specimens using millimetres as units

Supplement

4. Relate the structure of the following to their functions:
 - ciliated cells – movement of mucus in the trachea and bronchi
 - root hair cells – absorption
 - palisade mesophyll cells – photosynthesis
 - red blood cells – transport of oxygen
 - sperm and egg cells – reproduction

B2.2 Movement in and out of cells

Core

1. Define *diffusion* as the net movement of particles from a region of their higher concentration to a region of their lower concentration down a concentration gradient, as a result of their random movement
2. State that substances move into and out of cells by diffusion through the cell membrane
3. State that water diffuses through partially permeable membranes by osmosis

5. State that water moves in and out of cells by osmosis through the cell membrane
6. Investigate and describe the effects on plant tissues of immersing them in solutions of different concentrations

Supplement

4. Define *osmosis* as the net movement of water molecules from a region of higher water potential (dilute solution) to a region of lower water potential (concentrated solution), through a partially permeable membrane
0653 Biology

B3 Biological molecules

Core

1. List the chemical elements that make up:
 - carbohydrates
 - fats
 - proteins
2. State that large molecules are made from smaller molecules, limited to:
 - starch and glycogen from glucose
 - proteins from amino acids
 - fats and oils from fatty acids and glycerol
3. Describe the use of:
 - iodine solution to test for starch
 - Benedict’s solution to test for reducing sugars
 - biuret test for proteins
 - ethanol emulsion test for fats and oils
4. State that water is important as a solvent

B4 Enzymes

Core

1. Define *enzymes* as proteins that function as biological catalysts
2. Investigate and describe the effect of changes in temperature and pH on enzyme activity

Supplement

2. Explain enzyme action with reference to the complementary shape of the active site of an enzyme and its substrate and the formation of a product
3. Explain the effect of changes in temperature on enzyme activity, in terms of kinetic energy, shape and fit, frequency of effective collisions and denaturation
4. Explain the effect of changes in pH on enzyme activity in terms of shape and fit and denaturation
<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Define photosynthesis as the process by which plants manufacture carbohydrates from raw materials using energy from light</td>
<td>3 State the balanced equation for photosynthesis</td>
</tr>
<tr>
<td></td>
<td>[6\text{CO}_2 + 6\text{H}_2\text{O} \xrightarrow[^{\text{light}}]{^{\text{chlorophyll}}} \text{C}6\text{H}{12}\text{O}_6 + 6\text{O}_2]</td>
</tr>
<tr>
<td>2 State the word equation for photosynthesis: carbon dioxide + water → glucose + oxygen, in the presence of light and chlorophyll</td>
<td>4 Explain that chlorophyll transfers light energy into chemical energy in molecules, for the synthesis of carbohydrates</td>
</tr>
<tr>
<td>6 Investigate the necessity for chlorophyll, light and carbon dioxide for photosynthesis, using appropriate controls</td>
<td>5 Outline the subsequent use and storage of the carbohydrates made in photosynthesis</td>
</tr>
<tr>
<td>8 Identify chloroplasts, cuticle, guard cells and stomata, upper and lower epidermis, palisade mesophyll, spongy mesophyll, vascular bundles, xylem and phloem in leaves of a dicotyledonous plant</td>
<td>7 Investigate and describe the effect of varying light intensity and temperature on the rate of photosynthesis (e.g. in submerged aquatic plants)</td>
</tr>
<tr>
<td>10 Describe the importance of:</td>
<td>9 Describe the significance of the features of a leaf in terms of functions, to include:</td>
</tr>
<tr>
<td>− nitrate ions for making amino acids</td>
<td>− palisade mesophyll and distribution of chloroplasts – photosynthesis</td>
</tr>
<tr>
<td>− magnesium ions for making chlorophyll</td>
<td>− stomata, spongy mesophyll cells and guard cells – gas exchange</td>
</tr>
<tr>
<td>11 Explain the effects of nitrate ion and magnesium ion deficiency on plant growth</td>
<td>− xylem for transport and support</td>
</tr>
<tr>
<td></td>
<td>− phloem for transport</td>
</tr>
</tbody>
</table>

Syllabus content
<table>
<thead>
<tr>
<th>B6 Animal nutrition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B6.1 Diet</td>
<td>Supplement</td>
</tr>
<tr>
<td>Core</td>
<td></td>
</tr>
<tr>
<td>1 State what is meant by the term balanced diet for humans</td>
<td>3 Explain how age, gender and activity affect the dietary needs of humans including during pregnancy and whilst breast-feeding</td>
</tr>
<tr>
<td>2 List the principal sources of, and describe the dietary importance of:</td>
<td>4 Describe the effects of malnutrition in relation to starvation, constipation, coronary heart disease, obesity and scurvy</td>
</tr>
<tr>
<td>– carbohydrates</td>
<td>5 Explain the causes and effects of vitamin D and iron deficiencies</td>
</tr>
<tr>
<td>– fats</td>
<td></td>
</tr>
<tr>
<td>– proteins</td>
<td>Supplement</td>
</tr>
<tr>
<td>– vitamins, limited to C and D</td>
<td>3 Define mechanical digestion as the breakdown of food into smaller pieces without chemical change to the food molecules</td>
</tr>
<tr>
<td>– mineral salts, limited to calcium and iron</td>
<td>4 Define chemical digestion as the breakdown of large, insoluble molecules into small, soluble molecules</td>
</tr>
<tr>
<td>– fibre (roughage)</td>
<td></td>
</tr>
<tr>
<td>– water</td>
<td></td>
</tr>
<tr>
<td>B6.2 Alimentary canal</td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td></td>
</tr>
<tr>
<td>1 Define ingestion as the taking of substances, e.g. food and drink, into the body through the mouth</td>
<td></td>
</tr>
<tr>
<td>2 Define digestion as the breakdown of large, insoluble food molecules into small, water-soluble molecules using mechanical and chemical processes</td>
<td></td>
</tr>
<tr>
<td>5 Define absorption as the movement of small food molecules and ions through the wall of the intestine into the blood</td>
<td></td>
</tr>
<tr>
<td>6 Define egestion as the passing out of food that has not been digested or absorbed, as faeces, through the anus</td>
<td></td>
</tr>
<tr>
<td>7 Identify the main regions of the alimentary canal and associated organs, limited to mouth, salivary glands, oesophagus, stomach, small intestine, pancreas, liver, gall bladder, large intestine and anus</td>
<td></td>
</tr>
<tr>
<td>8 Describe the functions of the regions of the alimentary canal listed above, in relation to ingestion, digestion, absorption and egestion of food</td>
<td></td>
</tr>
</tbody>
</table>
0653 Biology

B6.3 Digestion

Core

1. State the significance of chemical digestion in the alimentary canal in producing small, soluble molecules that can be absorbed

Supplement

2. State the functions of enzymes as follows:
 - amylase breaks down starch to simpler sugars
 - protease breaks down protein to amino acids
 - lipase breaks down fats to fatty acids and glycerol
3. State where, in the alimentary canal, amylase, protease and lipase are secreted
4. State the functions of the hydrochloric acid in gastric juice, limited to killing bacteria in food and giving an acid pH for enzymes

B7 Transport

B7.1 Transport in plants

Core

1. State the functions of xylem and phloem
2. Identify the position of xylem as seen in sections of roots, stems and leaves, limited to non-woody dicotyledonous plants
3. Identify root hair cells, as seen under the light microscope, and state their functions
4. State the pathway taken by water through root, stem and leaf as root hair cell, root cortex cells, xylem and mesophyll cells
5. Investigate, using a suitable stain, the pathway of water through the above-ground parts of a plant
6. State that water is transported from the roots to leaves through the xylem vessels
7. Define transpiration as loss of water vapour from plant leaves by evaporation of water at the surfaces of the mesophyll cells followed by diffusion of water vapour through the stomata
8. Investigate and describe the effects of variation of temperature and humidity on transpiration rate

Supplement

4. Explain that the large surface area of root hairs increases the rate of the absorption of water
10. Explain the effects of variation of temperature, and humidity on transpiration rate
0653 Biology

B7.2 Transport in mammals

Core

1. Describe the circulatory system as a system of blood vessels with a pump and valves to ensure one-way flow of blood.

4. Name and identify the structures of the mammalian heart, limited to the muscular wall, the septum, the left and right ventricles and atria, one-way valves and coronary arteries.

5. State that blood is pumped away from the heart into arteries and returns to the heart in veins.

7. Name the main blood vessels to and from the:
 - heart, limited to vena cava, aorta, pulmonary artery and pulmonary vein
 - lungs, limited to the pulmonary artery and pulmonary vein

9. Investigate and state the effect of physical activity on pulse rate.

11. Describe the structure and functions of arteries, veins and capillaries.

13. List the components of blood as red blood cells, white blood cells, platelets and plasma.

14. Identify red and white blood cells, as seen under the light microscope, on prepared slides and in diagrams and photomicrographs.

15. State the functions of the following components of blood:
 - red blood cells in transporting oxygen, including the role of haemoglobin
 - white blood cells in phagocytosis and antibody production
 - platelets in clotting (details are not required)
 - plasma in the transport of blood cells, ions, soluble nutrients, hormones and carbon dioxide

Supplement

2. Describe the double circulation in terms of circulation to the lungs and circulation to the body tissues in mammals.

3. Explain the advantages of a double circulation.

6. Describe the functioning of the heart in terms of the contraction of muscles of the atria and ventricles and the action of the valves.

8. Describe coronary heart disease in terms of the blockage of coronary arteries and state the possible risk factors as diet, stress, smoking, genetic predisposition, age and gender.

10. Explain the effect of physical activity on the heart rate.

12. Explain how the structures of arteries, veins and capillaries are adapted for their function.
0653 Biology

B8 Gas exchange and respiration

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Name and identify the lungs, diaphragm, ribs, intercostal muscles, larynx, trachea, bronchi, bronchioles, alveoli and associated capillaries.</td>
<td>2. List the features of gas exchange surfaces in animals, limited to large surface area, thin surface, good blood supply and good ventilation with air.</td>
</tr>
<tr>
<td>3. State the differences in composition between inspired and expired air limited to oxygen, carbon dioxide and water vapour.</td>
<td>4. Explain the differences in composition between inspired and expired air.</td>
</tr>
<tr>
<td>5. Use limewater as a test for carbon dioxide to investigate the differences in composition between inspired and expired air.</td>
<td>7. Explain the effects of physical activity on rate and depth of breathing in terms of the increased carbon dioxide concentration in the blood, causing an increased rate of breathing.</td>
</tr>
<tr>
<td>6. Investigate and describe the effects of physical activity on rate and depth of breathing.</td>
<td>8. Explain the role of goblet cells, mucus and ciliated cells in protecting the gas exchange system from pathogens and particles.</td>
</tr>
</tbody>
</table>

Supplement

| 9. State that tobacco smoking can cause chronic obstructive pulmonary disease (COPD), lung cancer and coronary heart disease. | 10. Describe the effects on the gas exchange system of tobacco smoke and its major toxic components, limited to carbon monoxide, nicotine and tar. |

B8.2 Respiration

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. State the uses of energy in the body of humans limited to: muscle contraction, protein synthesis, growth and the maintenance of a constant body temperature.</td>
<td>2. Define aerobic respiration as the chemical reactions in cells that use oxygen to break down nutrient molecules to release energy.</td>
</tr>
<tr>
<td>3. State the word equation for aerobic respiration as glucose + oxygen → carbon dioxide + water.</td>
<td>4. State the balanced chemical equation for aerobic respiration as $C_6H_{12}O_6 + 6O_2 → 6CO_2 + 6H_2O$.</td>
</tr>
</tbody>
</table>
0653 Biology

B9 Coordination and response

B9.1 Hormones in humans

Core

1. Define a *hormone* as a chemical substance, produced by a gland, carried by the blood, which alters the activity of one or more specific target organs.

2. Describe adrenaline as the hormone secreted in ‘fight or flight’ situations and its effects, limited to increased breathing and pulse rate and widened pupils.

3. Give examples of situations in which adrenaline secretion increases.

Supplement

- Discuss the role of the hormone adrenaline in the chemical control of metabolic activity, including increasing the blood glucose concentration and pulse rate.

B9.2 Tropic responses

Core

1. Define *gravitropism* as a response in which parts of a plant grow towards or away from gravity.

2. Define *phototropism* as a response in which parts of a plant grow towards or away from the direction from which light is coming.

3. Investigate gravitropism and phototropism in shoots and roots.

Supplement

- Explain phototropism and gravitropism of a shoot as examples of the chemical control of plant growth.

- Explain the role of auxin in controlling shoot growth, limited to:
 - auxin made in shoot tip (only)
 - auxin spreads through the plant from the shoot tip
 - auxin is unequally distributed in response to light and gravity
 - auxin stimulates cell elongation.

B10 Reproduction

B10.1 Asexual and sexual reproduction

Core

1. Define *asexual reproduction* as a process resulting in the production of genetically identical offspring from one parent.

2. Identify examples of asexual reproduction from information provided.

3. Define *sexual reproduction* as a process involving the fusion of the nuclei of two gametes (sex cells) to form a zygote and the production of offspring that are genetically different from each other.
0653 Biology

B10.2 Sexual reproduction in plants

Core

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identify and draw, using a hand lens if necessary, the sepals, petals, stamens, filaments and anthers, carpels, style, stigma, ovary and ovules, of an insect-pollinated flower.</td>
</tr>
<tr>
<td>2</td>
<td>State the functions of the sepals, petals, anthers, stigmas and ovaries.</td>
</tr>
<tr>
<td>3</td>
<td>Define pollination as the transfer of pollen grains from the anther to the stigma.</td>
</tr>
<tr>
<td>4</td>
<td>Name the agents of pollination.</td>
</tr>
<tr>
<td>5</td>
<td>State that fertilisation occurs when a pollen nucleus fuses with a nucleus in an ovule.</td>
</tr>
<tr>
<td>6</td>
<td>Investigate and state the environmental conditions that affect germination of seeds: limited to the requirement for water, oxygen and a suitable temperature.</td>
</tr>
</tbody>
</table>

Supplement

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Use a hand lens to identify and describe the anthers and stigmas of a wind-pollinated flower.</td>
</tr>
<tr>
<td>4</td>
<td>Distinguish between the pollen grains of insect-pollinated and wind-pollinated flowers.</td>
</tr>
<tr>
<td>8</td>
<td>Describe the structural adaptations of insect-pollinated and wind-pollinated flowers.</td>
</tr>
</tbody>
</table>

B10.3 Sexual reproduction in humans

Core

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identify and name on diagrams of the male reproductive system: the testes, scrotum, sperm ducts, prostate gland, urethra and penis.</td>
</tr>
<tr>
<td>2</td>
<td>State the function of the parts of the male reproductive system limited to:</td>
</tr>
<tr>
<td></td>
<td>- testes – production of male gametes (sperm)</td>
</tr>
<tr>
<td></td>
<td>- scrotum – sac that holds the testes outside the body</td>
</tr>
<tr>
<td></td>
<td>- sperm ducts – transfer sperm to the urethra</td>
</tr>
<tr>
<td></td>
<td>- prostate gland – secrete fluids for sperm to swim in forming semen</td>
</tr>
<tr>
<td></td>
<td>- urethra – carries urine and semen out of the body</td>
</tr>
<tr>
<td></td>
<td>- penis – transfers semen to vagina during sexual intercourse</td>
</tr>
<tr>
<td>3</td>
<td>Identify and name on diagrams of the female reproductive system: the ovaries, oviducts, uterus, cervix and vagina.</td>
</tr>
</tbody>
</table>

continued
0653 Biology

B10.3 Sexual reproduction in humans continued

Core

- **4** State the function of the parts of the female reproductive system limited to:
 - ovaries – release of female gametes (eggs)
 - oviducts – transfers egg to uterus and the site of fertilisation
 - uterus – where the fetus develops
 - cervix – ring of muscle at the opening of the uterus
 - vagina – receives penis during sexual intercourse

- **5** Describe fertilisation as the fusion of the nuclei from a male gamete (sperm) and a female gamete (egg cell/ovum)

- **9** Describe the menstrual cycle in terms of changes in the ovaries and in the lining of the uterus (knowledge of sex hormones **not** required)

- **10** State that in early development, the zygote forms an embryo which is a ball of cells that implants into the wall of the uterus

- **13** State that human immunodeficiency virus (HIV) infection may lead to acquired immune deficiency syndrome (AIDS)

- **14** Describe the methods of transmission of HIV

- **15** Explain how the spread of sexually transmitted infections (STIs) is controlled

Supplement

- **6** Compare male and female gametes in terms of size, structure, motility and numbers

- **7** State the adaptive features of sperm, limited to flagellum and the presence of enzymes

- **8** State the adaptive features of egg cells, limited to energy stores and a jelly coating that changes after fertilisation

- **11** State the functions of the umbilical cord, placenta, amniotic sac and amniotic fluid

- **12** Describe the function of the placenta and umbilical cord in relation to exchange of dissolved nutrients, gases and excretory products and providing a barrier to toxins (structural details are **not** required)
0653 Biology

B11 Organisms and their environment

Core
1. State that the Sun is the principal source of energy input to biological systems.
2. Define the terms:
 - *food chain* as showing the transfer of energy from one organism to the next, beginning with a producer.
 - *food web* as a network of interconnected food chains.
 - *producer* as an organism that makes its own organic nutrients, usually using energy from sunlight, through photosynthesis.
 - *consumer* as an organism that gets its energy by feeding on other organisms.
 - *herbivore* as an animal that gets its energy by eating plants.
 - *carnivore* as an animal that gets its energy by eating other animals.
 - *decomposer* as an organism that gets its energy from dead or waste organic matter.
3. Construct simple food chains.
4. Interpret food chains and food webs in terms of identifying producers and consumers.
5. State that consumers may be classed as primary, secondary and tertiary according to their position in a food chain.

Supplement
3. Define the terms:
 - *ecosystem* as a unit containing all of the organisms and their environment, interacting together, in a given area, e.g. a lake.
 - *trophic level* as the position of an organism in a food chain or food web.
4. Describe how energy is transferred between trophic levels.
9. Identify producers, primary consumers, secondary consumers, tertiary consumers and quaternary consumers as the trophic levels in food webs and food chains.

B12 Human influences on ecosystems

Core
1. Describe the carbon cycle, limited to photosynthesis, respiration, feeding, decomposition, fossilisation and combustion.
2. List the undesirable effects of deforestation as an example of habitat destruction, to include extinction, loss of soil, flooding and increase of carbon dioxide in the atmosphere.

Supplement
2. Discuss the effects of the combustion of fossil fuels and the cutting down of forests on the oxygen and carbon dioxide concentrations in the atmosphere.
4. Explain the process of eutrophication of water in terms of:
 - increased availability of nitrate and other ions.
 - increased growth of producers.
 - increased decomposition after death of producers.
 - increased aerobic respiration by decomposers.
 - reduction in dissolved oxygen.
 - death of organisms requiring dissolved oxygen in water.
<table>
<thead>
<tr>
<th>0653 Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 The particulate nature of matter</td>
</tr>
<tr>
<td>Core</td>
</tr>
<tr>
<td>1 State the distinguishing properties of solids, liquids and gases</td>
</tr>
<tr>
<td>2 Describe the structure of solids, liquids and gases in terms of particle separation, arrangement and types of motion</td>
</tr>
<tr>
<td>3 Describe the changes of state in terms of melting, boiling, evaporation, freezing and condensation</td>
</tr>
<tr>
<td>5 Describe qualitatively the pressure and temperature of a gas in terms of the motion of its particles</td>
</tr>
<tr>
<td>6 Demonstrate understanding of the terms atom, molecule and ion</td>
</tr>
<tr>
<td>C2 Experimental techniques</td>
</tr>
<tr>
<td>C2.1 Measurement</td>
</tr>
<tr>
<td>1 Name and suggest appropriate apparatus for the measurement of time, temperature, mass and volume, including burettes, pipettes and measuring cylinders</td>
</tr>
<tr>
<td>C2.2 Criteria of purity</td>
</tr>
<tr>
<td>1 Interpret simple chromatograms</td>
</tr>
<tr>
<td>C2.3 Methods of purification</td>
</tr>
<tr>
<td>1 Describe and explain methods of separation and purification by the use of a suitable solvent, filtration, crystallisation, distillation, fractional distillation and paper chromatography</td>
</tr>
<tr>
<td>2 Suggest suitable separation and purification techniques, given information about the substances involved</td>
</tr>
<tr>
<td>C3 Atoms, elements and compounds</td>
</tr>
<tr>
<td>C3.1 Physical and chemical changes</td>
</tr>
<tr>
<td>1 Identify physical and chemical changes, and understand the differences between them</td>
</tr>
</tbody>
</table>
0653 Chemistry

C3.2 Elements, compounds and mixtures

Core
1. Describe the differences between elements, mixtures and compounds, and between metals and non-metals.
2. Define the terms *solvent, solute, solution* and *concentration*.

C3.3 Atomic structure and the Periodic Table

Core
1. Describe the structure of an atom in terms of a central nucleus, containing protons and neutrons, and ‘shells’ of electrons.
2. Describe the build-up of electrons in ‘shells’ and understand the significance of the noble gas electronic structures and of the outer shell electrons.
 - (The ideas of the distribution of electrons in s and p orbitals and in d block elements are not required)
3. State the charges and approximate relative masses of protons, neutrons and electrons.
4. Define and use *proton number* (atomic number) as the number of protons in the nucleus of an atom.
5. Define and use *nucleon number* (mass number) as the total number of protons and neutrons in the nucleus of an atom.

Supplement
6. Use proton number and the simple structure of atoms to explain the basis of the Periodic Table, with special reference to the elements of proton numbers 1 to 20.

C3.4 Ions and ionic bonds

Core
1. Describe the formation of ions by electron loss or gain.
2. Use dot-and-cross diagrams to describe the formation of ionic bonds between Group I and Group VII.

Supplement
3. Describe the formation of ionic bonds between metallic and non-metallic elements to include the strong attraction between ions because of their opposite electrical charges.
4. Describe the lattice structure of ionic compounds as a regular arrangement of alternating positive and negative ions, exemplified by the sodium chloride structure.
0653 Chemistry

C3.5 Molecules and covalent bonds

Core

<table>
<thead>
<tr>
<th>1</th>
<th>State that non-metallic elements form simple molecules with covalent bonds between atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Describe the formation of single covalent bonds in H₂, Cl₂, H₂O, CH₄, NH₃ and HCl as the sharing of pairs of electrons leading to the noble gas configuration including the use of dot-and-cross diagrams</td>
</tr>
<tr>
<td>4</td>
<td>Describe the differences in volatility, solubility and electrical conductivity between ionic and covalent compounds</td>
</tr>
</tbody>
</table>

Supplement

| 3 | Use and draw dot-and-cross diagrams to represent the bonding in the more complex covalent molecules such as N₂, C₂H₆, CH₃OH, and CO₂ |
| 5 | Explain the differences in melting point and boiling point of ionic and covalent compounds in terms of attractive forces |

C4 Stoichiometry

Core

1	Use the symbols of the elements and write the formulae of simple compounds
3	Deduce the formula of a simple compound from the relative numbers of atoms present
4	Deduce the formula of a simple compound from a model or a diagrammatic representation
5	Construct and use word equations
6	Interpret and balance simple symbol equations

Supplement

| 2 | Determine the formula of an ionic compound from the charges on the ions present |
| 7 | Construct and use symbol equations, with state symbols, including ionic equations |

C5 Electricity and chemistry

Core

1	Define *electrolysis* as the breakdown of an ionic compound when molten or in aqueous solution by the passage of electricity
2	Use the terms *inert electrode*, *electrolyte*, *anode* and *cathode*
4	Describe the electrode products and the observations made, using inert electrodes (platinum or carbon), in the electrolysis of:
	- molten lead(II) bromide
	- concentrated aqueous sodium chloride
	- dilute sulfuric acid

Supplement

| 3 | Describe electrolysis in terms of the ions present and the reactions at the electrodes, in terms of gain of electrons by cations and loss of electrons by anions to form atoms |
| 5 | Predict the products of the electrolysis of a specified molten binary compound |
C6 Energy changes in chemical reactions

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe the meaning of exothermic and endothermic reactions</td>
<td>2. Describe bond breaking as an endothermic process and bond forming as an exothermic process</td>
</tr>
<tr>
<td>2. Draw and label energy level diagrams for exothermic and endothermic reactions using data provided</td>
<td>3. Draw and label energy level diagrams for exothermic and endothermic reactions using data provided</td>
</tr>
<tr>
<td>4. Interpret energy level diagrams showing exothermic and endothermic reactions and the activation energy of a reaction</td>
<td>4. Interpret energy level diagrams showing exothermic and endothermic reactions and the activation energy of a reaction</td>
</tr>
</tbody>
</table>

C7 Chemical reactions

C7.1 Rate (speed) of reaction

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe practical methods for investigating the rate of a reaction which produces a gas</td>
<td>3. Suggest suitable apparatus, given information, for experiments, including collection of gases and measurement of rates of reaction</td>
</tr>
<tr>
<td>2. Interpret data obtained from experiments concerned with rate of reaction</td>
<td>5. Describe and explain the effect of changing concentration in terms of frequency of collisions between reacting particles</td>
</tr>
<tr>
<td>4. Describe the effect of concentration, particle size, catalysts and temperature on the rate of reactions</td>
<td>6. Describe and explain the effect of changing temperature in terms of the frequency of collisions between reacting particles and more colliding particles possessing the minimum energy (activation energy) to react</td>
</tr>
</tbody>
</table>

Note: Candidates should be encouraged to use the term *rate* rather than *speed.*

C7.2 Redox

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe oxidation and reduction in chemical reactions in terms of oxygen loss/gain (Oxidation state limited to its use to name ions, e.g. iron(II), iron(III), copper(II).)</td>
<td>2. Define and identify an oxidising agent as a substance which oxidises another substance during a redox reaction and a reducing agent as a substance which reduces another substance during a redox reaction</td>
</tr>
</tbody>
</table>

|
0653 Chemistry

C8 Acids, bases and salts

C8.1 The characteristic properties of acids and bases

Core

1. Describe neutrality and relative acidity and alkalinity in terms of pH (whole numbers only) measured using Universal Indicator.
2. Describe the characteristic properties of acids (exemplified by dilute hydrochloric acid and dilute sulfuric acid) including their effect on litmus paper and their reactions with metals, bases and carbonates.
3. Describe and explain the importance of controlling acidity in soil.

C8.2 Preparation of salts

Core

1. Describe the preparation, separation and purification of salts using techniques specified in Section C2 and the reactions specified in Section C8.1.

Supplement

2. Suggest a method of making a given salt from suitable starting material, given appropriate information.

C8.3 Identification of ions and gases

Core

1. Describe and use the following tests to identify:
 - *aqueous cations*: ammonium, calcium, copper(II), iron(II), iron(III) and zinc, by means of aqueous sodium hydroxide and aqueous ammonia as appropriate (formulae of complex ions are not required).
 - *cations*: flame tests to identify lithium, sodium, potassium and copper(II).
 - *anions*: carbonate (by reaction with dilute acid and then limewater), chloride (by reaction under acidic conditions with aqueous silver nitrate), nitrate (by reduction with aluminium) and sulfate (by reaction under acidic conditions with aqueous barium ions).
 - *gases*: ammonia (using damp red litmus paper), carbon dioxide (using limewater), chlorine (using damp litmus paper), hydrogen (using a lighted splint), oxygen (using a glowing splint).
0653 Chemistry

C9 The Periodic Table

Core

1. Describe the Periodic Table as a method of classifying elements and its use to predict properties of elements

Supplement

2. Describe and explain the relationship between Group number, number of outer shell electrons and metallic/non-metallic character

C9.2 Periodic trends

Core

1. Describe the change from metallic to non-metallic character across a period

Supplement

2. Describe and explain the relationship between Group number, number of outer shell electrons and metallic/non-metallic character

C9.3 Group properties

Core

1. Describe lithium, sodium and potassium in Group I as a collection of relatively soft metals showing a trend in melting point, density and reaction with water
2. Describe the halogens, chlorine, bromine and iodine in Group VII, as a collection of diatomic non-metals showing a trend in colour and physical state

Supplement

2. Predict the properties of other elements in Group I, given data, where appropriate
3. State the reaction of chlorine, bromine and iodine with other halide ions
4. Predict the properties of other elements in Group VII, given data where appropriate
5. Identify trends in other groups, given data about the elements concerned

C9.4 Transition elements

Core

1. Describe the transition elements as a collection of metals having high densities, high melting points and forming coloured compounds, and which, as elements and compounds, often act as catalysts

C9.5 Noble gases

Core

1. Describe the noble gases, in Group VIII or 0, as being unreactive, monoatomic gases and explain this in terms of electronic structure
2. State the uses of the noble gases in providing an inert atmosphere, i.e. argon in lamps, helium for filling balloons
<table>
<thead>
<tr>
<th>0653 Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10 Metals</td>
</tr>
<tr>
<td>C10.1 Properties of metals</td>
</tr>
<tr>
<td>Core</td>
</tr>
<tr>
<td>1. Describe the general physical properties of metals as solids with high melting and boiling points, malleable and good conductors of heat and electricity</td>
</tr>
<tr>
<td>2. Describe alloys, such as brass, as mixtures of a metal with other elements</td>
</tr>
<tr>
<td>3. Explain in terms of their properties why alloys are used instead of pure metals</td>
</tr>
<tr>
<td>Supplement</td>
</tr>
<tr>
<td>4. Identify representations of alloys from diagrams of structure</td>
</tr>
<tr>
<td>C10.2 Reactivity series</td>
</tr>
<tr>
<td>Core</td>
</tr>
<tr>
<td>1. Place in order of reactivity: potassium, sodium, calcium, magnesium, aluminium, (carbon), zinc, iron, (hydrogen) and copper, by reference to the reactions, if any, of the elements with:</td>
</tr>
<tr>
<td>- water or steam</td>
</tr>
<tr>
<td>- dilute hydrochloric acid</td>
</tr>
<tr>
<td>- reduction of their oxides with carbon</td>
</tr>
<tr>
<td>3. Deduce an order of reactivity from a given set of experimental results</td>
</tr>
<tr>
<td>Supplement</td>
</tr>
<tr>
<td>2. Describe the reactivity series in terms of the tendency of a metal to form its positive ion, illustrated by its reaction, if any, with the aqueous ions of other listed metals</td>
</tr>
<tr>
<td>C10.3 Extraction of metals from their ores</td>
</tr>
<tr>
<td>Core</td>
</tr>
<tr>
<td>1. Describe the use of carbon in the extraction of copper from copper oxide</td>
</tr>
<tr>
<td>3. Know that aluminium is extracted from the ore bauxite by electrolysis</td>
</tr>
<tr>
<td>5. Describe metal ores as a finite resource and hence the need to recycle metals</td>
</tr>
<tr>
<td>Supplement</td>
</tr>
<tr>
<td>2. Describe and explain the essential reactions in the extraction of iron from hematite in the blast furnace</td>
</tr>
<tr>
<td>[C + O_2 \rightarrow CO_2]</td>
</tr>
<tr>
<td>[C + CO_2 \rightarrow 2CO]</td>
</tr>
<tr>
<td>[Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2]</td>
</tr>
<tr>
<td>4. Relate the method of extraction of a metal from its ore to its position in the reactivity series for the metals listed in section C10.2 and for other metals, given information</td>
</tr>
</tbody>
</table>
0653 Chemistry

C11 Air and water

C11.1 Water

Core

1. Describe a chemical test for water using copper(II) sulfate and cobalt(II) chloride
2. Describe, in outline the treatment of the water supply in terms of filtration and chlorination

C11.2 Air

Core

1. State the composition of clean air as being a mixture of 78% nitrogen, 21% oxygen and small quantities of noble gases, water vapour and carbon dioxide
2. Name the common pollutants in air as being carbon monoxide, sulfur dioxide and oxides of nitrogen
3. State the adverse effect of these common air pollutants on buildings and on health
4. State the conditions required for the rusting of iron (presence of oxygen and water)
5. Describe and explain barrier methods of rust prevention, including paint and other coatings

C11.3 Carbon dioxide and methane

Core

1. State the formation of carbon dioxide:
 - as a product of complete combustion of carbon-containing substances
 - as a product of respiration
 - as a product of the reaction between an acid and a carbonate
 - as a product of thermal decomposition of calcium carbonate
2. State that carbon dioxide and methane are greenhouse gases

Supplement

3. State that increased concentrations of greenhouse gases cause an enhanced greenhouse effect, which may contribute to climate change
0653 Chemistry

C12 Organic chemistry

C12.1 Fuels

Core

1. State that coal, natural gas and petroleum are fossil fuels that produce carbon dioxide on combustion
2. Name methane as the main constituent of natural gas
3. Describe petroleum as a mixture of hydrocarbons and its separation into useful fractions by fractional distillation
4. Name the uses of the fractions as:
 - refinery gas for bottled gas for heating and cooking
 - gasoline fraction for fuel (petrol) in cars
 - naphtha fraction as a feedstock for making chemicals
 - diesel oil/gas oil for fuel in diesel engines
 - bitumen for road surfaces

C12.2 Homologous series

Supplement

1. Describe the homologous series of alkanes and alkenes as families of compounds with the same general formula and similar chemical properties

C12.3 Alkanes

Core

1. Describe alkanes as saturated hydrocarbons whose molecules contain only single covalent bonds
2. Describe the properties of alkanes (exemplified by methane) as being generally unreactive, except in terms of burning
3. Describe the complete combustion of hydrocarbons to give carbon dioxide and water

Supplement

4. Describe the properties of molecules within a fraction
0653 Chemistry

C12.4 Alkenes

Core

1. Describe alkenes as unsaturated hydrocarbons whose molecules contain one double covalent bond.
2. State that cracking is a reaction that produces alkenes.
3. Recognise saturated and unsaturated hydrocarbons:
 - from molecular structures
 - by their reaction with aqueous bromine
4. Describe the formation of poly(ethene) as an example of addition polymerisation of monomer units.

Supplement

3. Describe the formation of smaller alkanes, alkenes and hydrogen by the cracking of larger alkane molecules and state the conditions required for cracking.
0653 Physics

P1 Motion

P1.1 Length and time

Core

1. Use and describe the use of rules and measuring cylinders to find a length or a volume
2. Use and describe the use of clocks and devices, both analogue and digital, for measuring an interval of time
3. Obtain an average value for a small distance and for a short interval of time by measuring multiples (including the period of a pendulum)

P1.2 Motion

Core

1. Define speed and calculate average speed from \(\frac{\text{total distance}}{\text{total time}} \)
2. Plot and interpret a speed-time graph and a distance-time graph
3. Recognise from the shape of a speed-time graph when a body is:
 - at rest
 - moving with constant speed
 - moving with changing speed

4. Demonstrate understanding that acceleration and deceleration are related to changing speed including qualitative analysis of the gradient of a speed-time graph

Supplement

4. Calculate the area under a speed-time graph to work out the distance travelled for motion with constant acceleration
5. Calculate acceleration from the gradient of a speed-time graph
6. Recognise linear motion for which the acceleration is constant and calculate the acceleration
7. Recognise motion for which the acceleration is not constant

P1.3 Mass and weight

Core

1. Distinguish between mass and weight
2. Know that the Earth is the source of a gravitational field
4. Recognise that \(g \) is the gravitational force on unit mass and is measured in N/kg
5. Recall and use the equation \(W = mg \)

Supplement

3. Describe, and use the concept of, weight as the effect of a gravitational field on a mass
0653 Physics

P1.4 Density

Core

1. Recall and use the equation \(\rho = \frac{m}{V} \)
2. Describe an experiment to determine the density of a liquid and of a regularly shaped solid and make the necessary calculation

Supplement

3. Describe the determination of the density of an irregularly shaped solid by the method of displacement and make the necessary calculation

P1.5 Effects of forces

Core

1. Describe how forces may change the size, shape and motion of a body

5. Understand friction as the force between two surfaces which impedes motion and results in heating
6. Recognise air resistance as a form of friction
7. Find the resultant of two or more forces acting along the same line
8. Recognise that if there is no resultant force on a body it either remains at rest or continues at constant speed in a straight line

Supplement

2. Plot and interpret extension-load graphs and describe the associated experimental procedure
3. State Hooke’s Law and recall and use the expression \(F = kx \), where \(k \) is the spring constant
4. Recognise the significance of the term ‘limit of proportionality’ for an extension-load graph

P1.6 Pressure

Core

1. Relate qualitatively pressure to force and area, using appropriate examples

Supplement

2. Recall and use the equation \(p = \frac{F}{A} \)

P2 Work, energy and power

P2.1 Work

Core

1. Relate (without calculation) work done to the magnitude of a force and distance moved in the direction of the force

Supplement

2. Recall and use \(W = Fd = \Delta E \)
0653 Physics

P2.2 Energy

Core

1. Demonstrate an understanding that work done = energy transferred
2. Demonstrate understanding that an object may have energy due to its motion (kinetic energy, K.E.) or its position (potential energy, P.E.) and that energy may be transferred and stored
3. Give and identify examples of changes in kinetic, gravitational potential, chemical potential, elastic potential (strain), thermal, sound and electrical potential energy that have occurred as a result of an event or process
4. Recognise that energy is transferred during events and processes, including examples of transfer by forces (mechanical working), by electric currents (electrical working), by heating and by waves
5. Apply the principle of conservation of energy to simple examples

Supplement

4. Recall and use the expressions K.E. = \(\frac{1}{2}mv^2 \) and gravitational potential energy (G.P.E) = \(mg \Delta h \)

P2.3 Power

Core

1. Relate (without calculation) power to work done and time taken, using appropriate examples

Supplement

2. Recall and use the equation \(P = \frac{\Delta E}{t} \) in simple systems, including electrical circuits

P2.4 Energy resources

Core

1. Distinguish between renewable and non-renewable sources of energy
2. Describe how electricity or other useful forms of energy may be obtained from:
 - chemical energy stored in fuel
 - water, including the energy stored in waves, in tides, and in water behind hydroelectric dams
 - geothermal resources
 - nuclear fission
 - heat and light from the Sun (solar cells and panels)
 - wind energy

Supplement

3. Give advantages and disadvantages of each method in terms of renewability, cost, reliability, scale and environmental impact
4. Understand that the Sun is the source of energy for all our energy resources except geothermal, nuclear and tidal
5. Understand that the source of tidal energy is mainly the moon
6. Show an understanding that energy is released by nuclear fusion in the Sun
0653 Physics

P3 Thermal Physics

P3.1 Simple kinetic molecular model of matter
Core
1. State the distinguishing properties of solids, liquids and gases
2. Describe qualitatively the pressure of a gas and the temperature of a gas, liquid or solid in terms of the motion of its particles
3. Use and describe the use of thermometers to measure temperature on the Celsius scale
4. State the meaning of melting point and boiling point, and recall the melting and boiling points for water
5. Describe evaporation in terms of the escape of more-energetic molecules from the surface of a liquid
6. Relate evaporation to the consequent cooling of the liquid

Supplement
2. Relate the properties of solids, liquids and gases to the forces and distances between the molecules and to the motion of the molecules

P3.2 Matter and thermal properties
Core
1. Describe qualitatively the thermal expansion of solids, liquids and gases at constant pressure
2. Identify and explain some of the everyday applications and consequences of thermal expansion

P3.3 Thermal processes
P3.3.1 Conduction
Core
1. Recognise and name typical good and bad thermal conductors
2. Describe experiments to demonstrate the properties of good and bad thermal conductors

Supplement
3. Explain conduction in solids in terms of molecular vibrations and transfer by electrons

P3.3.2 Convection
Core
1. Recognise convection as the main method of energy transfer in fluids
3. Interpret and describe experiments designed to illustrate convection in liquids and gases (fluids)

Supplement
2. Relate convection in fluids to density changes
0653 Physics

P3.3.3 Radiation

Core

1. Recognise radiation as the method of energy transfer that does not require a medium to travel through
2. Identify infra-red radiation as the part of the electromagnetic spectrum often involved in energy transfer by radiation

Supplement

3. Describe the effect of surface colour (black or white) and texture (dull or shiny) on the emission, absorption and reflection of radiation
4. Interpret and describe experiments to investigate the properties of good and bad emitters and good and bad absorbers of infra-red radiation

P3.3.4 Consequences of energy transfer

Core

1. Identify and explain some of the everyday applications and consequences of conduction, convection and radiation

P4 Properties of waves, including light and sound

P4.1 General wave properties

Core

1. Demonstrate understanding that waves transfer energy without transferring matter
2. Describe what is meant by wave motion as illustrated by vibration in ropes and springs and by experiments using water waves
3. State the meaning of speed, frequency, wavelength and amplitude
4. Describe how waves can undergo:
 - reflection at a plane surface
 - refraction due to a change of speed

Supplement

4. Distinguish between transverse and longitudinal waves and give suitable examples
6. Recall and use the equation \(v = f \lambda \)
7. Understand that refraction is caused by a change in speed as a wave moves from one medium to another
<table>
<thead>
<tr>
<th>0653 Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4.2 Light</td>
</tr>
<tr>
<td>P4.2.1 Reflection of light</td>
</tr>
<tr>
<td>Core</td>
</tr>
<tr>
<td>1. Describe the formation of an optical image by a plane mirror and give its characteristics</td>
</tr>
<tr>
<td>2. Recall and use the law: angle of incidence (i) = angle of reflection (r) recognizing these angles are measured to the normal</td>
</tr>
<tr>
<td>3. Perform simple constructions, measurements and calculations for reflection by plane mirrors</td>
</tr>
<tr>
<td>P4.2.2 Refraction of light</td>
</tr>
<tr>
<td>Core</td>
</tr>
<tr>
<td>1. Interpret and describe an experimental demonstration of the refraction of light</td>
</tr>
<tr>
<td>P4.2.3 Thin converging lens</td>
</tr>
<tr>
<td>Core</td>
</tr>
<tr>
<td>1. Describe the action of a thin converging lens on a beam of light</td>
</tr>
<tr>
<td>2. Use the terms principal focus and focal length</td>
</tr>
<tr>
<td>3. Draw ray diagrams for the formation of a real image by a single lens</td>
</tr>
<tr>
<td>Supplement</td>
</tr>
<tr>
<td>4. Use and describe the use of a single lens as a magnifying glass</td>
</tr>
<tr>
<td>P4.3 Electromagnetic spectrum</td>
</tr>
<tr>
<td>Core</td>
</tr>
<tr>
<td>1. Describe the main features of the electromagnetic spectrum in order of frequency, from radio waves to gamma radiation ((\gamma))</td>
</tr>
<tr>
<td>2. State that all electromagnetic waves travel with the same high speed in a vacuum and approximately the same in air</td>
</tr>
<tr>
<td>4. Describe typical properties and uses of radiations in all the different regions of the electromagnetic spectrum including:</td>
</tr>
<tr>
<td>− radio and television communications (radio waves)</td>
</tr>
<tr>
<td>− satellite television and telephones (microwaves)</td>
</tr>
<tr>
<td>− electrical appliances, remote controllers for televisions and intruder alarms (infra-red)</td>
</tr>
<tr>
<td>− medicine and security (X-rays)</td>
</tr>
<tr>
<td>5. Demonstrate an understanding of safety issues regarding the use of microwaves and X-rays</td>
</tr>
<tr>
<td>6. State the dangers of ultraviolet radiation, from the Sun or from tanning lamps</td>
</tr>
<tr>
<td>Supplement</td>
</tr>
<tr>
<td>3. State that the speed of electromagnetic waves in a vacuum is (3.0 \times 10^8) m/s</td>
</tr>
</tbody>
</table>
P4.4 Sound

Core

1. Describe the production of sound by vibrating sources

4. State that the approximate range of audible frequencies for a healthy human ear is 20 Hz to 20,000 Hz

5. Show an understanding that a medium is needed to transmit sound waves

6. Describe and interpret an experiment to determine the speed of sound in air, including calculation

8. Relate the loudness and pitch of sound waves to amplitude and frequency

9. Describe how the reflection of sound may produce an echo

Supplement

2. Describe the longitudinal nature of sound waves

3. Describe the transmission of sound waves in air in terms of compressions and rarefactions

7. Recognise that sound travels faster in liquids than gases and faster in solids than in liquids

P5 Electrical quantities

P5.1 Electric charge

Core

1. State that there are positive and negative charges

2. State that unlike charges attract and that like charges repel

3. Describe and interpret simple experiments to show the production and detection of electrostatic charges by friction

4. State that charging a body involves the addition or removal of electrons

5. Distinguish between electrical conductors and insulators and give typical examples
<table>
<thead>
<tr>
<th>0653 Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>P5.2 Current, potential difference and electromotive force (e.m.f.)</td>
</tr>
<tr>
<td>Core</td>
</tr>
<tr>
<td>1 Demonstrate understanding of current, potential difference, e.m.f. and resistance.</td>
</tr>
<tr>
<td>2 State that current is related to the flow of charge</td>
</tr>
<tr>
<td>5 State that current in metals is due to a flow of electrons</td>
</tr>
<tr>
<td>6 State that the potential difference (p.d.) across a circuit component is measured in volts</td>
</tr>
<tr>
<td>7 Use and describe the use of an ammeter and a voltmeter, both analogue and digital</td>
</tr>
<tr>
<td>8 State that the electromotive force (e.m.f) of an electrical source of energy is measured in volts</td>
</tr>
<tr>
<td>P5.3 Resistance</td>
</tr>
<tr>
<td>Core</td>
</tr>
<tr>
<td>1 State that resistance = p.d./current and understand qualitatively how changes in p.d. or resistance affect current</td>
</tr>
<tr>
<td>2 Recall and use the equation $R = V/I$</td>
</tr>
<tr>
<td>P6 Electric circuits</td>
</tr>
<tr>
<td>P6.1 Circuit diagrams</td>
</tr>
<tr>
<td>Core</td>
</tr>
<tr>
<td>1 Draw and interpret circuit diagrams containing sources, switches, resistors (fixed and variable), lamps, ammeters, voltmeters and fuses (Symbols for other common circuit components will be provided in questions)</td>
</tr>
</tbody>
</table>
0653 Physics

P6.2 Series and parallel circuits

Core

1. Understand that the current at every point in a series circuit is the same
2. Calculate the combined resistance of two or more resistors in series
3. State that, for a parallel circuit, the current from the source is larger than the current in each branch
4. State that the combined resistance of two resistors in parallel is less than that of either resistor by itself
5. State the advantages of connecting lamps in parallel in a circuit

Supplement

3. Recall and use the fact that the sum of the p.d.s across the components in a series circuit is equal to the total p.d. across the supply
4. Recall and use the fact that the current from the source is the sum of the currents in the separate branches of a parallel circuit
5. Calculate the combined resistance of two resistors in parallel

P6.3 Electrical Energy

Supplement

1. Recall and use the equations \(P = IV \) and \(E = IVt \)

P6.4 Dangers of electricity

Core

1. Identify electrical hazards including:
 - damaged insulation
 - overheating of cables
 - damp conditions
2. State that a fuse protects a circuit
3. Explain the use of fuses and choose appropriate fuse ratings
6. **Practical assessment**

Scientific subjects are, by their nature, experimental. It is therefore important that an assessment of a candidate’s knowledge and understanding of science should contain a practical component (see assessment objective AO3).

Schools’ circumstances (e.g. the availability of resources) differ greatly, so two alternative ways of examining the practical component are provided. The alternatives are:

- Paper 5: Practical Test
- Paper 6: Alternative to Practical (written paper).

Whichever practical assessment route is chosen, the following points should be noted:

- the same assessment objectives apply
- the same practical skills are to be learned and developed
- the same sequence of practical activities is appropriate.

Candidates may **not** use textbooks in the practical component, nor any of their own records of laboratory work carried out during their course.

Calculators may be used in all parts of the assessment.

6.1 Teaching experimental skills

The best preparation for these papers is for learners to pursue a course in which practical work is fully integrated so that it is a normal and natural part of the teaching.

Teachers are expected to identify suitable opportunities to embed practical techniques and investigative work throughout the course, rather than as an isolated aspect of preparation for examination. This approach will not only provide opportunities for developing experimental skills but will increase the appeal of the course, and the enjoyment of the subject. Practical work helps learners to acquire a secure understanding of the syllabus topics and to appreciate how scientific theories are developed and tested. It also promotes important scientific attitudes such as objectivity, integrity, co-operation, enquiry and inventiveness.

Experimental work

Experimental work is an essential component of all science and should form a key part of teachers’ delivery plans for this syllabus.

Experimental work within science education:

- gives candidates first-hand experience of phenomena
- enables candidates to acquire practical skills
- provides candidates with the opportunity to plan and carry out investigations into practical problems.
Note on taking readings

When approximate volumes are used, e.g. about 2 cm3, it is expected that candidates will estimate this and not use measuring devices.

A measuring instrument should be used to its full precision. Thermometers may be marked in 1 °C intervals but it is often appropriate to interpolate between scale divisions and record a temperature to the nearest 0.0 °C or 0.5 °C. Measurements using a rule require suitable accuracy of recording, such as 15.0 cm rather than 15 cm; the use of millimetres when appropriate should be encouraged. Similarly, when measuring current, it is often more appropriate to use milliamperes rather than amperes.

Apparatus list

The list below details the apparatus expected to be generally available for both the teaching and the examination of Paper 5. The list is not exhaustive: in particular, some items that are commonly regarded as standard equipment in a science laboratory are not included.

The Confidential Instructions, provided to Centres prior to the examination of Paper 5, will give the detailed requirements for the examination.

- rulers capable of measuring to 1 mm
- metre rule
- mounted needles or seekers or long pins with large heads
- means of cutting biological materials, such as scalpels, solid edged razor blades or knives
- scissors
- forceps
- means of writing on glassware
- beakers, 100 cm3, 250 cm3
- polystyrene or other plastic beakers of approximate capacity 150 cm3
- test-tubes (Pyrex or hard glass), approximately 125 mm × 16 mm
- boiling tubes, approximately 150 mm × 25 mm
- delivery tubes
- conical flasks, within the range 150 cm3 to 250 cm3
- means of measuring small volumes of liquids, such as syringes (with needles removed)
- measuring cylinders, 100 cm3, 50 cm3, 25 cm3, 10 cm3
- dropping pipettes
- white tiles
- spotting tiles
- water-bath
- large containers (e.g. plastic bowl) to hold cold water
- hand lens ×6 magnification
- thermometers, −10 °C to +110 °C with 1 °C graduations
- stopclocks (or wall clock or wrist-watch), to measure to an accuracy of 1 s
- Petri dishes
- glass rods
- spatulas
- wooden splints
• chemicals (e.g. for food tests, limewater test)
• indicators (e.g. litmus paper, Universal Indicator paper, full range Universal Indicator, hydrogen carbonate indicator)
• burettes, 50 cm³
• pipettes, 25 cm³
• pipette fillers
• filter funnels and filter paper
• wash bottle
• ammeter FSD 1 A, 1.5 A
• voltmeter FSD 1 V, 5 V
• electrical cells (batteries) and holders to enable several cells to be joined
• connecting leads and crocodile clips
• d.c. power supply, variable to 12 V
• low-voltage filament lamps in holders
• various resistors and resistance wire
• switches
• good supply of masses and holders
• 2 cm expendable springs
• clamps and stands
• pendulum bobs
• newton meters
• Plasticine or modelling clay
• wooden boards
• converging lens with \(f = 15 \) cm
• glass or Perspex block, rectangular and semi-circular
• glass or Perspex prism, triangular
• optics pins
• plane mirrors
• ray box
6.2 Description of Components, Paper 5: Practical Test and Paper 6: Alternative to Practical

These papers are based on testing experimental skills. One question on each paper assesses the skill of planning. This question will be based on any one of the sciences, which could be: Biology, Chemistry or Physics and may vary between each examination series. The questions do not assess specific syllabus content from Section 5: Syllabus content. Any information required to answer these questions is contained within the question paper or from the experimental context and skills listed below.

Questions are structured to assess across the full grade range.

Paper 5: Practical Test will typically consist of four questions, three of which require the use of apparatus.

Paper 6: Alternative to Practical will test the same experimental skills as Paper 5, and will contain many of the same question parts.

Experimental skills tested in Paper 5: Practical Test and Paper 6: Alternative to Practical

Questions may be set requiring candidates to:

• carefully follow a sequence of instructions
• describe, explain or comment on experimental arrangements and techniques
• select the most appropriate apparatus or method for a task and justify the choice made
• draw, complete or label diagrams of apparatus
• perform simple arithmetical calculations
• take readings from an appropriate measuring device or from an image of the device (e.g. thermometer, rule, protractor, measuring cylinder, ammeter, stopwatch), including:
 – reading analogue and digital scales with accuracy and appropriate precision
 – interpolating between scale divisions when appropriate
 – correcting for zero errors when appropriate
• plan to take a sufficient number and range of measurements, repeating where appropriate to obtain an average value
• describe or explain precautions taken in carrying out a procedure to ensure safety or the accuracy of observations and data, including the control of variables and repetition of measurements
• identify key variables and describe how, or explain why, certain variables should be controlled
• record observations systematically, for example in a table, using appropriate units and to a consistent and appropriate degree of precision
• process data, using a calculator where necessary
• present and analyse data graphically, including the use of best-fit lines where appropriate, interpolation and extrapolation, and the determination of a gradient, intercept or intersection
• interpret and evaluate observations and experimental data
• draw an appropriate conclusion, justifying it by reference to the data and using an appropriate explanation
• comment critically on a procedure or point of practical detail, and suggest an appropriate improvement
• evaluate the quality of data, identifying and dealing appropriately with any anomalous results
• identify possible causes of uncertainty, in data or in a conclusion
• make estimates or describe outcomes which demonstrate their familiarity with an experiment, procedure or technique
• plan an experiment or investigation, including making reasoned predictions of expected results and suggesting suitable apparatus and techniques.

Biology
Candidates may be asked questions on the following experimental contexts:
• the use of familiar, and unfamiliar, techniques to record observations and data, process them and make deductions from them
• recall of simple chemical tests, e.g. for food substances and the use of limewater, hydrogen carbonate indicator, litmus and Universal Indicator paper
• recognise, observe, record and measure images of familiar, and unfamiliar, biological specimens
• make a clear line drawing from an image of a specimen, calculating the magnification and adding labels as required.

Chemistry
Candidates may be asked questions on the following experimental contexts:
• simple quantitative experiments involving the measurement of volumes and/or masses
• rates (speeds) of reaction
• measurement of temperature based on a thermometer with 1 °C graduations and energetics
• problems of an investigatory nature, possibly including suitable organic compounds
• filtration
• electrolysis
• identification of ions and gases
• metals and the reactivity series
• acids, bases, oxides and the preparation of salts
• redox reactions and rusting.

Physics
Candidates may be asked questions on the following experimental contexts:
• measurement of physical quantities such as length or volume or force or density
• cooling and heating
• springs and balances
• timing motion or oscillations
• electrical circuits, circuit diagrams and electrical symbols
• optics equipment such as mirrors, prisms and lenses
• procedures using simple apparatus, in situations where the method may not be familiar to the candidate
• use or describe the use of common techniques, apparatus and materials, for example ray-tracing equipment or the connection of electric circuits
• explain the manipulation of the apparatus to obtain observations or measurements, e.g.:
 – when determining a derived quantity, such as the extension per unit load for a spring
 – when testing/identifying the relationship between two variables, such as between the p.d. across a wire and its length
 – when comparing physical quantities, such as two masses, using a balancing method.
7. Appendix

7.1 Electrical symbols

Candidates are expected to be able to recall and use the standard electrical symbols listed below.

<table>
<thead>
<tr>
<th>Core</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell</td>
<td></td>
<td>switch </td>
</tr>
<tr>
<td>battery of cells</td>
<td></td>
<td>or </td>
</tr>
<tr>
<td>power supply</td>
<td></td>
<td>ammeter </td>
</tr>
<tr>
<td>a.c. power supply</td>
<td></td>
<td>voltmeter </td>
</tr>
<tr>
<td>junction of conductors</td>
<td></td>
<td>fuse </td>
</tr>
<tr>
<td>lamp</td>
<td></td>
<td>variable resistor </td>
</tr>
<tr>
<td>fixed resistor</td>
<td></td>
<td>electric bell </td>
</tr>
<tr>
<td>heater</td>
<td></td>
<td>motor </td>
</tr>
</tbody>
</table>
7.2 Symbols and units for physical quantities

Candidates should be able to give the symbols for the following physical quantities and, where indicated, state the units in which they are measured. The list for the Extended syllabus content includes both the Core and the Supplement.

Candidates should be familiar with the following multipliers: M mega, k kilo, c centi, m milli.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Usual symbol</th>
<th>Usual unit</th>
<th>Quantity</th>
<th>Usual symbol</th>
<th>Usual unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>l, h …</td>
<td>km, m, cm, mm</td>
<td>mass</td>
<td>m, M</td>
<td>mg</td>
</tr>
<tr>
<td>area</td>
<td>A</td>
<td>m², cm²</td>
<td>mass</td>
<td>m, M</td>
<td>mg</td>
</tr>
<tr>
<td>volume</td>
<td>V</td>
<td>m³, cm³</td>
<td>mass</td>
<td>m, M</td>
<td>mg</td>
</tr>
<tr>
<td>weight</td>
<td>W</td>
<td>N</td>
<td>time</td>
<td>t</td>
<td>ms</td>
</tr>
<tr>
<td>density</td>
<td>ρ</td>
<td>g/cm³, kg/m³</td>
<td>time</td>
<td>t</td>
<td>ms</td>
</tr>
<tr>
<td>speed</td>
<td>u, v</td>
<td>km/h, m/s, cm/s</td>
<td>acceleration</td>
<td>a</td>
<td>m/s²</td>
</tr>
<tr>
<td>acceleration</td>
<td>a</td>
<td>m/s²</td>
<td>acceleration</td>
<td>a</td>
<td>m/s²</td>
</tr>
<tr>
<td>acceleration of free fall</td>
<td>g</td>
<td>m/s²</td>
<td>acceleration of free fall</td>
<td>g</td>
<td>m/s²</td>
</tr>
<tr>
<td>force</td>
<td>F</td>
<td>N</td>
<td>gravitational field strength</td>
<td>g</td>
<td>N/kg</td>
</tr>
<tr>
<td>work done</td>
<td>W, E</td>
<td>J, kJ, MJ</td>
<td>work done</td>
<td>W, E</td>
<td>J, kJ, MJ</td>
</tr>
<tr>
<td>energy</td>
<td>E</td>
<td>J, kJ, MJ</td>
<td>energy</td>
<td>E</td>
<td>J, kJ, MJ</td>
</tr>
<tr>
<td>power</td>
<td>P</td>
<td>W, kW, MW</td>
<td>power</td>
<td>P</td>
<td>W, kW, MW</td>
</tr>
<tr>
<td>pressure</td>
<td>p</td>
<td>N/m²</td>
<td>pressure</td>
<td>p</td>
<td>Pa</td>
</tr>
<tr>
<td>temperature</td>
<td>θ, T</td>
<td>°C</td>
<td>temperature</td>
<td>θ, T</td>
<td>°C</td>
</tr>
<tr>
<td>frequency</td>
<td>f</td>
<td>Hz, kHz</td>
<td>frequency</td>
<td>f</td>
<td>Hz, kHz</td>
</tr>
<tr>
<td>wavelength</td>
<td>λ</td>
<td>m, cm</td>
<td>wavelength</td>
<td>λ</td>
<td>m, cm</td>
</tr>
<tr>
<td>focal length</td>
<td>f</td>
<td>cm</td>
<td>focal length</td>
<td>f</td>
<td>cm</td>
</tr>
<tr>
<td>angle of incidence</td>
<td>i</td>
<td>degree (°)</td>
<td>angle of incidence</td>
<td>i</td>
<td>degree (°)</td>
</tr>
<tr>
<td>angle of reflection, refraction</td>
<td>r</td>
<td>degree (°)</td>
<td>angle of reflection, refraction</td>
<td>r</td>
<td>degree (°)</td>
</tr>
<tr>
<td>potential difference/voltage</td>
<td>V</td>
<td>V, mV</td>
<td>potential difference/voltage</td>
<td>V</td>
<td>V, mV</td>
</tr>
<tr>
<td>current</td>
<td>I</td>
<td>A, mA</td>
<td>current</td>
<td>I</td>
<td>A, mA</td>
</tr>
</tbody>
</table>
Cambridge IGCSE Combined Science 0653 Syllabus for examination in 2019, 2020 and 2021

Core Supplement

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Usual symbol</th>
<th>Usual unit</th>
<th>Quantity</th>
<th>Usual symbol</th>
<th>Usual unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.m.f.</td>
<td>E</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>resistance</td>
<td>R</td>
<td>Ω</td>
<td>charge</td>
<td>Q</td>
<td>C</td>
</tr>
</tbody>
</table>

7.3 Notes for use in qualitative analysis

Tests for anions

<table>
<thead>
<tr>
<th>anion</th>
<th>test</th>
<th>test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbonate (CO_3^{2-})</td>
<td>add dilute acid</td>
<td>effervescence, carbon dioxide produced</td>
</tr>
<tr>
<td>chloride (Cl^-) [in solution]</td>
<td>acidify with dilute nitric acid, then add aqueous silver nitrate</td>
<td>white ppt.</td>
</tr>
<tr>
<td>nitrate (NO_3^-) [in solution]</td>
<td>add aqueous sodium hydroxide, then aluminium foil; warm carefully</td>
<td>ammonia produced</td>
</tr>
<tr>
<td>sulfate (SO_4^{2-}) [in solution]</td>
<td>acidify, then add aqueous barium nitrate</td>
<td>white ppt.</td>
</tr>
</tbody>
</table>

Tests for aqueous cations

<table>
<thead>
<tr>
<th>cation</th>
<th>effect of aqueous sodium hydroxide</th>
<th>effect of aqueous ammonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonium (NH_4^+)</td>
<td>ammonia produced on warming</td>
<td>–</td>
</tr>
<tr>
<td>calcium (Ca^{2+})</td>
<td>white ppt., insoluble in excess</td>
<td>no ppt. or very slight white ppt.</td>
</tr>
<tr>
<td>copper (Cu^{2+})</td>
<td>light blue ppt., insoluble in excess</td>
<td>light blue ppt., soluble in excess, giving a dark blue solution</td>
</tr>
<tr>
<td>iron(II) (Fe^{2+})</td>
<td>green ppt., insoluble in excess</td>
<td>green ppt., insoluble in excess</td>
</tr>
<tr>
<td>iron(III) (Fe^{3+})</td>
<td>red-brown ppt., insoluble in excess</td>
<td>red-brown ppt., insoluble in excess</td>
</tr>
<tr>
<td>zinc (Zn^{2+})</td>
<td>white ppt., soluble in excess, giving a colourless solution</td>
<td>white ppt., soluble in excess, giving a colourless solution</td>
</tr>
</tbody>
</table>

Tests for gases

<table>
<thead>
<tr>
<th>gas</th>
<th>test and test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonia (NH_3)</td>
<td>turns damp, red litmus paper blue</td>
</tr>
<tr>
<td>carbon dioxide (CO_2)</td>
<td>turns limewater milky</td>
</tr>
<tr>
<td>chlorine (Cl_2)</td>
<td>bleaches damp litmus paper</td>
</tr>
<tr>
<td>hydrogen (H_2)</td>
<td>‘pops’ with a lighted splint</td>
</tr>
<tr>
<td>oxygen (O_2)</td>
<td>relights a glowing splint</td>
</tr>
</tbody>
</table>
Flame tests for metal ions

<table>
<thead>
<tr>
<th>metal ion</th>
<th>flame colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>lithium (Li⁺)</td>
<td>red</td>
</tr>
<tr>
<td>sodium (Na⁺)</td>
<td>yellow</td>
</tr>
<tr>
<td>potassium (K⁺)</td>
<td>lilac</td>
</tr>
<tr>
<td>copper(II) (Cu²⁺)</td>
<td>blue-green</td>
</tr>
</tbody>
</table>
7.4 The Periodic Table

<table>
<thead>
<tr>
<th>Group</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
</table>
| | 3 | Li 7 | lithium 7
| | 4 | Be 9 | beryllium 9
| | 6 | C 12 | carbon 12
| | 7 | N 14 | nitrogen 14
| | 8 | O 16 | oxygen 16
| | 9 | F 19 | fluorine 19
| | 10| Ne 20| neon 20
| | 11| Na 23 | sodium 23
| | 12| Mg 24 | magnesium 24
| | 13| Al 27 | aluminum 27
| | 14| Si 28 | silicon 28
| | 15| P 31 | phosphorus 31
| | 16| S 32 | sulfur 32
| | 17| Cl 35.5 | chlorine 35.5
| | 18| Ar 40 | argon 40
| | 19| K 39 | potassium 39
| | 20| Ca 40 | calcium 40
| | 21| Sc 45 | scandium 45
| | 22| Ti 48 | titanium 48
| | 23| V 50 | vanadium 50
| | 24| Cr 52 | chromium 52
| | 25| Mn 55 | manganese 55
| | 26| Fe 56 | iron 56
| | 27| Co 59 | cobalt 59
| | 28| Ni 59 | nickel 59
| | 29| Cu 64 | copper 64
| | 30| Zn 65 | zinc 65
| | 31| Ga 70 | gallium 70
| | 32| Ge 73 | germanium 73
| | 33| As 75 | arsenic 75
| | 34| Se 79 | selenium 79
| | 35| Br 80 | bromine 80
| | 36| Kr 84 | krypton 84
| | 37| Rb 85 | rubidium 85
| | 38| Sr 88 | strontium 88
| | 39| Y 89 | yttrium 89
| | 40| Zr 91 | zirconium 91
| | 41| Nb 92 | niobium 92
| | 42| Mo 95 | molybdenum 95
| | 43| Tc 98 | technetium 98
| | 44| Ru 101 | rutenium 101
| | 45| Rh 103 | rhodium 103
| | 46| Pd 106 | palladium 106
| | 47| Ag 107 | silver 107
| | 48| Cd 112 | cadmium 112
| | 49| In 115 | indium 115
| | 50| Sn 119 | tin 119
| | 51| Sb 121 | antimony 121
| | 52| Te 127 | tellurium 127
| | 53| I 126 | iodine 126
| | 54| Xe 131 | xenon 131
| | 55| Cs 133 | cesium 133
| | 56| Ba 137 | barium 137
| | 57| La 139 | lanthanum 139
| | 58| Ce 140 | cerium 140
| | 59| Pr 141 | praseodymium 141
| | 60| Nd 144 | neodymium 144
| | 61| Pm 145 | promethium 145
| | 62| Sm 150 | samarium 150
| | 63| Eu 152 | europium 152
| | 64| Gd 157 | gadolinium 157
| | 65| Tb 159 | terbium 159
| | 66| Dy 163 | dysprosium 163
| | 67| Ho 165 | holmium 165
| | 68| Er 167 | erbium 167
| | 69| Tm 169 | thulium 169
| | 70| Yb 173 | ytterbium 173
| | 71| Lu 175 | lutetium 175
| | 72| Hf 178 | hafnium 178
| | 73| Ta 181 | tantalum 181
| | 74| W 184 | tungsten 184
| | 75| Re 186 | rhenium 186
| | 76| Os 190 | osmium 190
| | 77| Ir 192 | iridium 192
| | 78| Pt 195 | platinum 195
| | 79| Au 197 | gold 197
| | 80| Hg 201 | mercury 201
| | 81| Tl 204 | thallium 204
| | 82| Pb 207 | lead 207
| | 83| Bi 209 | bismuth 209
| | 84| Po 210 | polonium 210
| | 85| At 218 | astatine 218
| | 86| Rn 219 | radon 219
| | 87| Fr 88 | francium 88
| | 88| Ra 89 | radium 89
| | 89| Ac 90 | actinium 90
| | 90| Th 91 | thorium 91
| | 91| Pa 92 | protactinium 92
| | 92| U 93 | uranium 93
| | 93| Np 94 | neptunium 94
| | 94| Pu 95 | plutonium 95
| | 95| Am 96 | americium 96
| | 96| Cm 97 | curium 97
| | 97| Bk 98 | berkelium 98
| | 98| Cf 99 | californium 99
| | 99| Es 100 | einsteinium 100
| | 100| Fm 101 | fermium 101
| | 101| Md 102 | mendelevium 102
| | 102| No 103 | nobelium 103
| | 103| Lr 105 | lawrencium 105

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.)
7.5 Safety in the laboratory

Responsibility for safety matters rests with Centres. Further information can be found from the following UK association, publications and regulations.

Associations

CLEAPSS is an advisory service providing support in practical science and technology.
http://www.cleapss.org.uk

Publications

CLEAPSS Laboratory Handbook, updated 2009 (available to CLEAPSS members only)
CLEAPSS Hazcards, 2007 update of 1995 edition (available to CLEAPSS members only)

UK Regulations

Control of Substances Hazardous to Health Regulations (COSHH) 2002 and subsequent amendment in 2004

A brief guide may be found at http://www.hse.gov.uk/pubns/indg136.pdf
7.6 Glossary of terms used in science papers

This glossary (which is relevant only to science subjects) will prove helpful to candidates as a guide, but it is neither exhaustive nor definitive. The glossary has been deliberately kept brief, not only with respect to the number of terms included, but also to the descriptions of their meanings. Candidates should appreciate that the meaning of a term must depend, in part, on its context.

1. Define (the term(s) …) is intended literally, only a formal statement or equivalent paraphrase being required.

2. What do you understand by/What is meant by (the term(s) …) normally implies that a definition should be given, together with some relevant comment on the significance or context of the term(s) concerned, especially where two or more terms are included in the question. The amount of supplementary comment intended should be interpreted in the light of the indicated mark value.

3. State implies a concise answer with little or no supporting argument (e.g. a numerical answer that can readily be obtained ‘by inspection’).

4. List requires a number of points, generally each of one word, with no elaboration. Where a given number of points is specified this should not be exceeded.

5. (a) Explain may imply reasoning or some reference to theory, depending on the context. It is another way of asking candidates to give reasons. The candidate needs to leave the examiner in no doubt why something happens.

 (b) Give a reason/Give reasons is another way of asking candidates to explain why something happens.

6. Describe requires the candidate to state in words (using diagrams where appropriate) the main points. Describe and explain may be coupled, as may state and explain.

7. Discuss requires the candidate to give a critical account of the points involved.

8. Outline implies brevity (i.e. restricting the answer to giving essentials).

9. Predict implies that the candidate is expected to make a prediction not by recall but by making a logical connection between other pieces of information.

10. Deduce implies that the candidate is not expected to produce the required answer by recall but by making a logical connection between other pieces of information.

11. Suggest is used in two main contexts, i.e. either to imply that there is no unique answer (e.g. in physics there are several examples of energy resources from which electricity, or other useful forms of energy, may be obtained), or to imply that candidates are expected to apply their general knowledge of the subject to a ‘novel’ situation, one that may be formally ‘not in the syllabus’ – many data response and problem solving questions are of this type.

12. Find is a general term that may variously be interpreted as calculate, measure, determine, etc.

13. Calculate is used when a numerical answer is required. In general, working should be shown, especially where two or more steps are involved.

14. Measure implies that the quantity concerned can be directly obtained from a suitable measuring instrument (e.g. length using a rule, or mass using a balance).

15. Determine often implies that the quantity concerned cannot be measured directly but is obtained from a graph or by calculation.

16. Estimate implies a reasoned order of magnitude statement or calculation of the quantity concerned, making such simplifying assumptions as may be necessary about points of principle and about the values of quantities not otherwise included in the question.

17. Sketch, when applied to graph work, implies that the shape and/or position of the curve need only be qualitatively correct, but candidates should be aware that, depending on the context, some quantitative aspects may be looked for (e.g. passing through the origin, having an intercept).

In diagrams, sketch implies that simple, freehand drawing is acceptable; nevertheless, care should be taken over proportions and the clear exposition of important details.
7.7 Mathematical requirements

Calculators may be used in all parts of the examination.

Candidates should be able to:

- add, subtract, multiply and divide
- use averages, decimals, fractions, percentages, ratios and reciprocals
- use standard notation, including both positive and negative indices
- understand significant figures and use them appropriately
- recognise and use direct and inverse proportion
- use positive, whole number indices in algebraic expressions
- draw charts and graphs from given data
- interpret charts and graphs
- determine the gradient and intercept of a graph
- select suitable scales and axes for graphs
- make approximate evaluations of numerical expressions
- recall and use equations for the areas of a rectangle, triangle and circle and the volumes of a rectangular block and a cylinder
- use mathematical instruments (ruler, compasses, protractor and set square)
- understand the meaning of angle, curve, circle, radius, diameter, circumference, square, parallelogram, rectangle and diagonal
- solve equations of the form \(x = y + z \) and \(x = yz \) for any one term when the other two are known
- recognise and use clockwise and anticlockwise directions
- recognise and use points of the compass (N, S, E, W)
- use sines and inverse sines (Extended candidates only).
7.8 Presentation of data

The solidus (/) is to be used for separating the quantity and the unit in tables, graphs and charts, e.g. time / s for time in seconds.

(a) Tables
- Each column of a table should be headed with the physical quantity and the appropriate unit, e.g. time / s.
- The column headings of the table can then be directly transferred to the axes of a constructed graph.

(b) Graphs
- Unless instructed otherwise, the independent variable should be plotted on the x-axis (horizontal axis) and the dependent variable plotted on the y-axis (vertical axis).
- Each axis should be labelled with the physical quantity and the appropriate unit, e.g. time / s.
- The scales for the axes should allow more than half of the graph grid to be used in both directions, and be based on sensible ratios, e.g. 2 cm on the graph grid representing 1, 2 or 5 units of the variable.
- The graph is the whole diagrammatic presentation, including the best-fit line when appropriate. It may have one or more sets of data plotted on it.
- Points on the graph should be clearly marked as crosses (x) or encircled dots (○).
- Large ‘dots’ are penalised. Each data point should be plotted to an accuracy of better than one half of each of the smallest squares on the grid.
- A best-fit line (trend line) should be a single, thin, smooth straight-line or curve. The line does not need to coincide exactly with any of the points; where there is scatter evident in the data, Examiners would expect a roughly even distribution of points either side of the line over its entire length. Points that are clearly anomalous should be ignored when drawing the best-fit line.
- The gradient of a straight line should be taken using a triangle whose hypotenuse extends over at least half of the length of the best-fit line, and this triangle should be marked on the graph.

(c) Numerical results
- Data should be recorded so as to reflect the precision of the measuring instrument.
- The number of significant figures given for calculated quantities should be appropriate to the least number of significant figures in the raw data used.

(d) Pie charts
- These should be drawn with the sectors in rank order, largest first, beginning at ‘noon’ and proceeding clockwise. Pie charts should preferably contain no more than six sectors.

(e) Bar charts
- These should be drawn when one of the variables is not numerical. They should be made up of narrow blocks of equal width that do not touch.

(f) Histograms
- These are drawn when plotting frequency graphs with continuous data. The blocks should be drawn in order of increasing or decreasing magnitude and they should touch.
7.9 ICT opportunities

In order to play a full part in modern society, candidates need to be confident and effective users of ICT. This syllabus provides candidates with a wide range of opportunities to use ICT in their study of biology, chemistry and physics.

Opportunities for ICT include:
• gathering information from the internet, DVDs and CD-ROMs
• gathering data using sensors linked to data-loggers or directly to computers
• using spreadsheets and other software to process data
• using animations and simulations to visualise scientific ideas
• using software to present ideas and information on paper and on screen.
8. Other information

Equality and inclusion

Cambridge International Examinations has taken great care in the preparation of this syllabus and assessment materials to avoid bias of any kind. To comply with the UK Equality Act (2010), Cambridge has designed this qualification with the aim of avoiding direct and indirect discrimination.

The standard assessment arrangements may present unnecessary barriers for candidates with disabilities or learning difficulties. Arrangements can be put in place for these candidates to enable them to access the assessments and receive recognition of their attainment. Access arrangements will not be agreed if they give candidates an unfair advantage over others or if they compromise the standards being assessed.

Candidates who are unable to access the assessment of any component may be eligible to receive an award based on the parts of the assessment they have taken.

Information on access arrangements is found in the Cambridge Handbook which can be downloaded from the website www.cie.org.uk/examsofficers.

Language

This syllabus and the associated assessment materials are available in English only.

Grading and reporting

Cambridge IGCSE results are shown by one of the grades A*, A, B, C, D, E, F or G indicating the standard achieved, A* being the highest and G the lowest. ‘Ungraded’ indicates that the candidate’s performance fell short of the standard required for grade G. ‘Ungraded’ will be reported on the statement of results but not on the certificate. The letters Q (result pending), X (no result) and Y (to be issued) may also appear on the statement of results but not on the certificate.

Entry option codes

To maintain the security of our examinations, we produce question papers for different areas of the world, known as ‘administrative zones’. Where the component entry option code has two digits, the first digit is the component number given in the syllabus. The second digit is the location code, specific to an administrative zone. Information about entry option codes can be found in the Cambridge Guide to Making Entries.