This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
1 rationalise the denominator to get \[\frac{(2 + \sqrt{5})(\sqrt{5} + 1)}{5 - 1} \] or better

or squaring to get \[\frac{(4 + 4\sqrt{5} + 5)(\sqrt{5} + 1)}{\text{their}^4} \] or better

\[\frac{29}{4} + \frac{13}{4} \sqrt{5} \text{ oe isw} \]

M1 or squaring to get \[\frac{4 + 4\sqrt{5} + 5}{\sqrt{5} - 1} \] or better

M1 or rationalising the denominator to get \[\frac{9 + 4\sqrt{5}}{\sqrt{5} + 1} \]

M1 or rationalising the denominator to get \[\frac{9 + 4\sqrt{5}}{\sqrt{5} + 1} \]

A1 + A1 correct simplification

Allow \[\frac{29 + 13\sqrt{5}}{4} \] etc.

2 Correctly eliminate \(y \)

\[2x^2 + (k - 9)x + 2 = 0 \]

M1 \(-kx + 2 = 2x^2 - 9x + 4 \) oe

A1 allow even if \(x \) terms not collected; condone \(\ldots = y \) provided later work implies it should be 0

M1 must be applied to a 3 term quadratic expression containing \(k \) as a coefficient; condone \(< 0 \) etc.

Reach \(\text{their}(k - 9 = \pm 4) \) or solves \(\text{their}(k^2 - 18k + 65) = 0 \)

M1 condone \(9 - k = \pm 4 \); condone an inequality at this stage

\(k = 5 \) and 13 cao

A1 mark final answer, do not isw; **A0** if inequalities for final answers
<table>
<thead>
<tr>
<th></th>
<th>Mark Scheme</th>
<th>Syllabus</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(i) (3(-1)^3 - 14(-1)^2 - 7(-1) + d = 0) with completion to (d = 10)</td>
<td>B1</td>
<td>at least (-3 - 14 + 7 + d = 0), (d = 10); N.B. = 0 must be seen or implied by (\ldots = d) or (\ldots = -d), may be seen in following step. or convincingly showing (3(-1)^3 - 14(-1)^2 - 7(-1) + 10 = 0); at least (-3 - 14 + 7 + 10 = 0) or correct synthetic division at least as far as (-1 \begin{array}{cccc}3 & -14 & -7 & 10 \ -3 & 17 & -10 & \ 3 & -17 & 10 & \end{array})</td>
</tr>
<tr>
<td></td>
<td>(ii) (3x^2 - 17x + 10) isw or (a = 3, b = -17, c = 10) isw</td>
<td>B2, 1, 0</td>
<td>(-1) each error; must be seen or referenced in (ii) even if found in (i) or (iii)</td>
</tr>
<tr>
<td></td>
<td>(iii) ((x+1)(x-5)(3x-2))</td>
<td>M1</td>
<td>for factorising quadratic ft correct; condone omission of ((x+1)) or for ft correct use of formula or ft correct completing the square</td>
</tr>
<tr>
<td></td>
<td>(-1, 5, \frac{2}{3})</td>
<td>A1</td>
<td>If M0 then SC1 for all three roots stated without working or verified/found by trials</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4 (i)</td>
<td>$12\left(x - \frac{1}{4}\right)^2 + \frac{17}{4}$</td>
<td>B3, 2, 1,0</td>
<td>one mark for each of p, q, r correct in a correctly formatted expression; allow correct equivalent values; If B0 then SC2 for $12\left(x - \frac{1}{4}\right)^2 + \frac{17}{4}$ or SC1 for correct 3 values seen in incorrect format e.g. $12\left(x - \frac{1}{4}\right)^2 + \frac{17}{4}$ or $12\left(x^2 - \frac{1}{4}\right)^2 + \frac{17}{4}$ or for a correct completed square form of the original expression in a different but correct format. e.g. $3\left(2x - \frac{1}{2}\right)^2 + \frac{17}{4}$</td>
</tr>
<tr>
<td></td>
<td>$\frac{4}{17}$ or their 0.235</td>
<td>B1ft</td>
<td>strict ft; their $\frac{4}{17}$ must be a proper fraction or decimal rounded to 3sig figs or more or truncated to 4 figs or more</td>
</tr>
<tr>
<td></td>
<td>$x = \frac{1}{4}$ oe</td>
<td>B1ft</td>
<td>strict ft; x must be correctly attributed</td>
</tr>
<tr>
<td>5 (i)</td>
<td>$1 - 20x + 160x^2$</td>
<td>B2, 1, 0</td>
<td>-1 each error If B0 then M1 for 3 correct terms seen; may be unsimplified e.g. $1, 5(-4x), \frac{5 \times 4}{2}(-4x)^2$ condone sign errors only; must be their -20 from (i)</td>
</tr>
<tr>
<td></td>
<td>$a + (\text{their} - 20) = -23$ soi</td>
<td>M1</td>
<td>validly obtained</td>
</tr>
<tr>
<td></td>
<td>$a = -3$</td>
<td>A1</td>
<td>validly obtained</td>
</tr>
<tr>
<td></td>
<td>$b + (\text{their} - 20)a + (\text{their}160) = 222$ soi</td>
<td>M1</td>
<td>condone sign errors only; must be their -20 and their 160 from (i) and their a if used</td>
</tr>
<tr>
<td></td>
<td>$b = 2$</td>
<td>A1</td>
<td>validly obtained</td>
</tr>
</tbody>
</table>
6 (a) (i) \(1\)
(ii) \(x = -1\) or \(-2\)

(b) \[
\frac{\log_3 5}{\log_3 a}\ 	ext{seen or implied}
\]
\[
2\log_3 15 = \log_3 15^2 \ 	ext{seen or implied}
\]
\[
\log_3 15^2 - \log_3 5 = \log_3 \left(\frac{15^2}{5}\right)
\]
\[
\log_3 45 \ 	ext{cao}
\]

<table>
<thead>
<tr>
<th>B1</th>
<th>B1 + B1</th>
<th>as final answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1*</td>
<td>B1dep*</td>
<td>may be implied by</td>
</tr>
<tr>
<td>B1</td>
<td></td>
<td>not from wrong working</td>
</tr>
<tr>
<td>B1</td>
<td></td>
<td>must be 45 not e.g. (\frac{225}{5}); with no wrong working seen</td>
</tr>
</tbody>
</table>

7 (i) \(x^4(3e^{1x}) + 4x^3e^{1x}\) isw
(ii) \[
\frac{1}{2 + \cos x} \times (-\sin x) \ 	ext{isw}
\]

(iii) \[
\frac{d}{dx}(\sin x) = \cos x \ 	ext{soi}
\]
\[
\frac{d}{dx}(\sqrt{x}) = \frac{1}{2} x^{-\frac{1}{2}} \ 	ext{soi}
\]
\[
\left(1 + \sqrt{x}\right) \text{heir cosx} - \left(\text{their} \frac{1}{2} x^{-\frac{1}{2}}\right) \sin x
\]
\[
\left(1 + \sqrt{x}\right)^2
\]

<table>
<thead>
<tr>
<th>B1 + B1</th>
<th>each term of the sum correct; must be a sum of two terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2</td>
<td>or B1 for (\frac{1}{2 + \cos x} \times (k \pm \sin x)) and (k) a constant</td>
</tr>
<tr>
<td>B1</td>
<td>for correct form of quotient rule ft</td>
</tr>
<tr>
<td>B1ft</td>
<td>their (\cos x) and their (\frac{1}{2} x^{-\frac{1}{2}}); allow correct use of product and chain rules to obtain</td>
</tr>
<tr>
<td></td>
<td>(\sin x \left(-\left(1 + \sqrt{x}\right)^2 \times \frac{1}{2} x^{-\frac{1}{2}} \right) + \cos x \left(1 + \sqrt{x}\right)^{-1}) oe</td>
</tr>
</tbody>
</table>
8
Substitution of either \(x - 5 \) or \(y + 5 \) into equation of curve and brackets expanded

\[
2x^2 - 8x - 10 = 0 \quad \text{or} \quad 2y^2 + 12y = 0
\]

Solving their quadratic

\((-1, -6)\) oe and \((5, 0)\) oe isw

\[\sqrt{72} \text{ or } 6\sqrt{2} \text{ cao isw} \]

M1 condone one sign error in either equation of curve or expansion of brackets; condone omission of \(= 0 \), BUT \(x - 5 \) or \(y + 5 \) must be correct

A1

M1 dep on a valid substitution attempt

A1 or **A1** for correct pair of \(x \) coordinates or correct pair of \(y \) coordinates

B1dep

9 (i)

\[
y = \left(\frac{2x + 1}{2}\right)^2 + c \text{ oe}
\]

\[10 = \frac{2}{6} (2(4) + 1)^2 + c \text{ oe}
\]

\[
y = \frac{(2x + 1)^2}{2} + c \text{ seen and } c = 1 \text{ or}
\]

\[
y = \frac{(2x + 1)^2}{2} + 1 \text{ isw}
\]

B2 or **B1** for \((2x + 1)^{2+1} \)

M1 for valid attempt to find \(c \); condone slips e.g. omission of power or sign error

A1 must have \(y = \ldots; \) condone \(f(x) = ... \)

9 (ii)

\[
\int \left(\frac{1}{3}(2x + 1)^2 + 1\right) dx = \frac{1}{15}(2x + 1)^{2+1} + x + (\text{const})
\]

B1 + B1

B1 for \((2x + 1)^{2+1} \)

B1 for \(\frac{1}{15}(2x + 1)^2 \)

B1ft

**B1 ft their \(c \) from (i) provided \(c \neq 0 \)

M1 for a genuine attempt to find \(F(1.5) - F(0) \) in an attempt to integrate their \(y \); if their \(F(0) \) is 0 must see at least their \(F(1.5) - 0 \); condone \(+ c \) as long as their \(c \) is not numerical.

A1 if decimal 3.57 or more accurate e.g. 3.566
10 (i)	Taking logs of both sides	M1	any base; must be an explicitly correct statement
	log \(y = \log A + x \log b \)	A1	correct form; any base; no recovery from incorrect method steps
(ii)	\(b \): awrt 3 to one sf isw or awrt 4 to one sf isw	B2	or M1 for \(b = e^{\text{their gradient}} \) soi; their gradient must be correctly evaluated as rise/run
	\(A \): awrt 0.5 to one sf	B2	or B1 for \(A = e^{-0.6} \)
(iii)	Evidence of graph used at \(\ln y = 5.4 \) soi	M1	or SC1 for \(A = e^{-0.3} = 0.7 \) (giving an awrt 0.7)
	awrt 4.4 to two sf	A1	or \(\frac{220}{\text{their}0.5} = (\text{their}4)^x \)
	or \(5.39... = \text{their}(1.4)x + \text{their} -0.6 \)		
	or \(\ln(220) = x \ln(\text{their}4) + \ln(\text{their}0.5) \)		
11 (i) \(f(x) > 3 \) or \([f(x)] \in \{3, \infty\}\)

 \[
 x + 1 = 2^y \\
 f^{-1}(x) = \log_2(x + 1)
 \]

 Domain \(x > 3 \)

 Range \(f^{-1}(x) > 2 \)

(ii) \(2^y (2^x - 1) \) oe isw

 \[2^y (2^x - 1) = 0 \text{ leading to } 2^x = 0, \text{ impossible} \text{ oe}\]

 \[2^x = 1 \Rightarrow x = 0\]

 0 is not in the domain (and so \(gf(x) = 0\) has no solutions)

 B1 condone \(y > 3 \)

 M1 \(y + 1 = 2^x \)

 A1 mark final answer

 \[\log_2(y + 1) = x \text{ and} \]

 \[f^{-1}(x) = \log_2(x + 1)\]

 or for \(f^{-1}(x) = \frac{\log(x)}{\log 2} \) (any base for this form)

 B1f ft their range of \(f \) provided mathematically valid inequality or interval

 B1 condone \(f(x) > 2 \) or \(y > 2 \)

 B1 e.g. \((2^x - 1)^2 + (2x - 1) \)

 or \(2^{2x} - 2 \times 2^x + 1 + 2^x - 1 \)

 B1 or \(2^x = 0 \) which is outside domain of \(gf \)

 M1 or \(2^x (2^x - 1) = 2^{2x} - 2^x = 0 \)

 \[\left[2^{2x} = 2^x\right] \Rightarrow x = 0\]

 A1
| 12 (i) | \(\frac{dy}{dx} = 3x^2 - 18x + 24 \)
Solving their \(3x^2 - 18x + 24 \geq 0 \)
by factorising or quadratic formula or completing the square | B1 | attempt at differentiation resulting in quadratic expression with two terms correct; allow = or \(\leq \) or < or > or \(\geq \) 0 omitted here. |
| 12 (ii) | Evaluating their \(\frac{dy}{dx} \) at \(x = 3 \)
Use of \(m_1m_2 = -1 \) to get \(m_{\text{normal}} = -\frac{1}{\text{their}(3)} \)
y = 18 soi
\(y - \text{their} 18 = \left(\frac{1}{3}\text{their}(x - 3) \right) \) or
y = \(\frac{1}{3}\text{their} x + c \) and \(c = \text{their} 17 \) isw
P(0, 17) cao | M1 | A1 if spurious attempt to combine; mark final answer |
| | | M1 | must be explicit statement of gradient of normal; may be seen in equation |
| | | M1 | ft their \(m \) provided a genuine attempt at \(m_{\text{normal}} \); no ft if \(m = \text{their} m_{\text{tangent}} \) |