1. ALGEBRA

Quadratic Equation

For the equation \(ax^2 + bx + c = 0 \),

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
\]

Binomial Theorem

\[
(a + b)^n = a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \ldots + \binom{n}{r} a^{n-r} b^r + \ldots + b^n,
\]

where \(n \) is a positive integer and \(\binom{n}{r} = \frac{n!}{(n-r)!r!} \).

2. TRIGONOMETRY

Identities

\[
\sin^2 A + \cos^2 A = 1.
\]
\[
\sec^2 A = 1 + \tan^2 A.
\]
\[
\cosec^2 A = 1 + \cot^2 A.
\]

Formulae for \(\triangle ABC \)

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.
\]
\[
a^2 = b^2 + c^2 - 2bc \cos A.
\]
\[
\Delta = \frac{1}{2} bc \sin A.
\]
1 Given that \(A = \begin{pmatrix} 13 & 6 \\ 7 & 4 \end{pmatrix} \), find the inverse matrix \(A^{-1} \) and hence solve the simultaneous equations

\[
13x + 6y = 41, \\
7x + 4y = 24.
\]

[4]

2 Variables \(x \) and \(y \) are connected by the equation \(y = (2x - 9)^3 \). Given that \(x \) is increasing at the rate of 4 units per second, find the rate of increase of \(y \) when \(x = 7 \).

[4]
3 Find the set of values of \(m \) for which the line \(y = mx + 2 \) does not meet the curve \(y = x^2 - 5x + 18 \). [5]

4 (a) A sports team of 3 attackers, 2 centres and 4 defenders is to be chosen from a squad of 5 attackers, 3 centres and 6 defenders. Calculate the number of different ways in which this can be done. [3]
(b) How many different 4-digit numbers greater than 3000 can be formed using the six digits 1, 2, 3, 4, 5 and 6 if no digit can be used more than once? [3]

5 (i) Differentiate $x \ln x$ with respect to x. [2]

(ii) Hence find $\int \ln x \, dx$. [3]
Solve the following equations.

(i) \[\frac{4^x}{2^{2-x}} = \frac{2^{4x}}{8^{x-3}} \] [3]

(ii) \[\lg (2y + 10) + \lg y = 2 \] [3]
The diagram shows a river with parallel banks. The river is 48 m wide and is flowing with a speed of 1.4 ms$^{-1}$. A boat travels in a straight line from a point P on one bank to a point Q which is on the other bank directly opposite P. It is given that the boat takes 10 seconds to cross the river.

(i) Find the speed of the boat in still water. [4]

(ii) Find the angle to the bank at which the boat should be steered. [2]
8 The function f is defined, for $0 \leq x \leq 2\pi$, by

$$f(x) = 3 + 5 \sin 2x.$$

State

(i) the amplitude of f, [1]

(ii) the period of f, [1]

(iii) the maximum and minimum values of f. [2]

Sketch the graph of $y = f(x)$. [3]
The line \(y = 2x - 9 \) intersects the curve \(x^2 + y^2 + xy + 3x = 46 \) at the points A and B. Find the equation of the perpendicular bisector of AB.
The diagram shows part of the curve \(y = x^3 - 8x^2 + 16x \).

(i) Show that the curve has a minimum point at (4, 0) and find the coordinates of the maximum point. [4]
(ii) Find the area of the shaded region enclosed by the x-axis and the curve. [4]
The table shows experimental values of two variables \(x \) and \(y \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>2.25</td>
<td>0.81</td>
<td>0.47</td>
<td>0.33</td>
</tr>
</tbody>
</table>

(i) On the graph paper below, plot \(xy \) against \(\frac{1}{x} \) and draw a straight line graph. [3]
(ii) Use your graph to express y in terms of x. [5]

(iii) Estimate the value of x and of y for which $xy = 4$. [3]
The diagram shows a sector \(AOB \) of a circle with centre \(O \) and radius 6 cm. Angle \(AOB = 0.6 \) radians. The point \(D \) lies on \(OB \) such that the length of \(OD \) is 2 cm. The point \(C \) lies on \(OA \) such that \(OCD \) is a right angle.

(i) Show that the length of \(OC \) is approximately 1.65 cm and find the length of \(CD \). [4]
(ii) Find the perimeter of the shaded region. [3]

(iii) Find the area of the shaded region. [3]