Syllabus

Cambridge IGCSE™ (9–1)
Co-ordinated Sciences (Double Award)
0973

Use this syllabus for exams in 2025, 2026 and 2027.
Exams are available in the June and November series.

Version 1
Please check the syllabus page at www.cambridgeinternational.org/0973
to see if this syllabus is available in your administrative zone.

For the purposes of screen readers, any mention in this document of Cambridge IGCSE refers to Cambridge International General Certificate of Secondary Education.
Why choose Cambridge International?

Cambridge International prepares school students for life, helping them develop an informed curiosity and a lasting passion for learning. We are part of Cambridge University Press & Assessment, which is a department of the University of Cambridge.

Our Cambridge Pathway gives students a clear path for educational success from age 5 to 19. Schools can shape the curriculum around how they want students to learn – with a wide range of subjects and flexible ways to offer them. It helps students discover new abilities and a wider world, and gives them the skills they need for life, so they can achieve at school, university and work.

Our programmes and qualifications set the global standard for international education. They are created by subject experts, rooted in academic rigour and reflect the latest educational research. They provide a strong platform for learners to progress from one stage to the next, and are well supported by teaching and learning resources.

Our mission is to provide educational benefit through provision of international programmes and qualifications for school education and to be the world leader in this field. Together with schools, we develop Cambridge learners who are confident, responsible, reflective, innovative and engaged – equipped for success in the modern world.

Every year, nearly a million Cambridge students from 10,000 schools in 160 countries prepare for their future with the Cambridge Pathway.

School feedback: ‘We think the Cambridge curriculum is superb preparation for university.’

Feedback from: Christoph Guttentag, Dean of Undergraduate Admissions, Duke University, USA

Quality management

Cambridge International is committed to providing exceptional quality. In line with this commitment, our quality management system for the provision of international qualifications and education programmes for students aged 5 to 19 is independently certified as meeting the internationally recognised standard, ISO 9001:2015. Learn more at www.cambridgeinternational.org/ISO9001
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why choose Cambridge International?</td>
<td>2</td>
</tr>
<tr>
<td>1 Why choose this syllabus?</td>
<td>5</td>
</tr>
<tr>
<td>2 Syllabus overview</td>
<td>8</td>
</tr>
<tr>
<td>Aims</td>
<td>8</td>
</tr>
<tr>
<td>Content overview</td>
<td>9</td>
</tr>
<tr>
<td>Assessment overview</td>
<td>10</td>
</tr>
<tr>
<td>Assessment objectives</td>
<td>11</td>
</tr>
<tr>
<td>3 Subject content</td>
<td>13</td>
</tr>
<tr>
<td>Biology</td>
<td>13</td>
</tr>
<tr>
<td>Chemistry</td>
<td>35</td>
</tr>
<tr>
<td>Physics</td>
<td>57</td>
</tr>
<tr>
<td>4 Details of the assessment</td>
<td>79</td>
</tr>
<tr>
<td>Core assessment</td>
<td>79</td>
</tr>
<tr>
<td>Extended assessment</td>
<td>79</td>
</tr>
<tr>
<td>Practical assessment</td>
<td>80</td>
</tr>
<tr>
<td>Language of measurement</td>
<td>83</td>
</tr>
<tr>
<td>Apparatus, materials and reagents</td>
<td>84</td>
</tr>
<tr>
<td>Safety in the laboratory</td>
<td>90</td>
</tr>
<tr>
<td>Electrical symbols</td>
<td>91</td>
</tr>
<tr>
<td>Symbols and units for physical quantities</td>
<td>92</td>
</tr>
<tr>
<td>Notes for use in qualitative analysis</td>
<td>94</td>
</tr>
<tr>
<td>The Periodic Table of Elements</td>
<td>96</td>
</tr>
<tr>
<td>Mathematical requirements</td>
<td>97</td>
</tr>
<tr>
<td>Presentation of data</td>
<td>98</td>
</tr>
<tr>
<td>Conventions (e.g. signs, symbols, terminology and nomenclature)</td>
<td>100</td>
</tr>
<tr>
<td>Command words</td>
<td>101</td>
</tr>
</tbody>
</table>
5 What else you need to know

Before you start .. 102
Making entries .. 103
Accessibility and equality .. 104
After the exam .. 105
How students and teachers can use the grades 105
Grade descriptions ... 105
Changes to this syllabus for 2025, 2026 and 2027 106

Important: Changes to this syllabus

For information about changes to this syllabus for 2025, 2026 and 2027, go to page 106.
1 Why choose this syllabus?

Key benefits

Cambridge IGCSE is the world’s most popular international qualification for 14 to 16 year olds, although it can be taken by students of other ages. It is tried, tested and trusted.

Students can choose from 70 subjects in any combination – it is taught by over 4500 schools in over 140 countries.

Our programmes balance a thorough knowledge and understanding of a subject and help to develop the skills learners need for their next steps in education or employment.

Cambridge IGCSE (9–1) Co-ordinated Sciences (Double Award) develops a set of transferable skills including handling data, practical problem-solving and applying the scientific method. Learners develop relevant attitudes, such as concern for accuracy and precision, objectivity, integrity, enquiry, initiative and inventiveness. They acquire the essential scientific skills required for progression to further studies or employment.

Our approach in Cambridge IGCSE (9–1) Co-ordinated Sciences (Double Award) encourages learners to be:

- **confident**, interested in learning about science, questioning ideas and using scientific language to communicate their views and opinions
- **responsible**, working methodically and safely when working alone or collaboratively with others
- **reflective**, learning from their experiences and interested in scientific issues that affect the individual, the community and the environment
- **innovative**, solving unfamiliar problems confidently and creatively
- **engaged**, keen to develop scientific skills, curious about scientific principles and their application in the world.

School feedback: ‘The strength of Cambridge IGCSE qualifications is internationally recognised and has provided an international pathway for our students to continue their studies around the world.’

Feedback from: Gary Tan, Head of Schools and CEO, Raffles International Group of Schools, Indonesia
International recognition and acceptance

Our expertise in curriculum, teaching and learning, and assessment is the basis for the recognition of our programmes and qualifications around the world. The combination of knowledge and skills in Cambridge IGCSE (9–1) Co-ordinated Sciences (Double Award) gives learners a solid foundation for further study. Candidates who achieve grades 9-9 to 4-4 are well prepared to follow a wide range of courses including Cambridge International AS & A Level sciences.

Cambridge IGCSEs are accepted and valued by leading universities and employers around the world as evidence of academic achievement. Many universities require a combination of Cambridge International AS & A Levels and Cambridge IGCSEs or equivalent to meet their entry requirements.

UK NARIC*, the national agency in the UK for the recognition and comparison of international qualifications and skills, has carried out an independent benchmarking study of Cambridge IGCSE and found it to be comparable to the standard of the GCSE in the UK. This means students can be confident that their Cambridge IGCSE qualifications are accepted as equivalent to UK GCSEs by leading universities worldwide.

* Due to the United Kingdom leaving the European Union, the UK NARIC national recognition agency function was re-titled as UK ENIC on 1 March 2021, operated and managed by Ecctis Limited. From 1 March 2021, international benchmarking findings are published under the Ecctis name.

Learn more at www.cambridgeinternational.org/recognition

School feedback: ‘Cambridge IGCSE is one of the most sought-after and recognised qualifications in the world. It is very popular in Egypt because it provides the perfect preparation for success at advanced level programmes.’

Feedback from: Managing Director of British School of Egypt BSE
Supporting teachers

We provide a wide range of resources, detailed guidance, innovative training and professional development so that you can give your students the best possible preparation for Cambridge IGCSE. To find out which resources are available for each syllabus go to our School Support Hub.

The School Support Hub is our secure online site for Cambridge teachers where you can find the resources you need to deliver our programmes. You can also keep up to date with your subject and the global Cambridge community through our online discussion forums.

Find out more at www.cambridgeinternational.org/support

<table>
<thead>
<tr>
<th>Planning and preparation</th>
<th>Teaching and assessment</th>
<th>Learning and revision</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Schemes of work</td>
<td>• Endorsed resources</td>
<td>• Example candidate responses</td>
<td></td>
</tr>
<tr>
<td>• Specimen papers</td>
<td>• Online forums</td>
<td>• Past papers and mark schemes</td>
<td></td>
</tr>
<tr>
<td>• Syllabuses</td>
<td>• Support for coursework and speaking tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Teacher guides</td>
<td></td>
<td>• Specimen paper answers</td>
<td></td>
</tr>
</tbody>
</table>

Sign up for email notifications about changes to syllabuses, including new and revised products and services at www.cambridgeinternational.org/syllabusupdates

Professional development

We support teachers through:

• Introductory Training – face-to-face or online
• Extension Training – face-to-face or online
• Enrichment Professional Development – face-to-face or online

Find out more at www.cambridgeinternational.org/events

• Cambridge Professional Development Qualifications

Find out more at www.cambridgeinternational.org/profdev

Supporting exams officers

We provide comprehensive support and guidance for all Cambridge exams officers.

Find out more at: www.cambridgeinternational.org/eoguide
2 Syllabus overview

Aims

The aims describe the purposes of a course based on this syllabus.

You can deliver some of the aims using suitable local, international or historical examples and applications, or through collaborative experimental work.

The aims are to enable students to:

• acquire scientific knowledge and understanding of scientific theories and practice
• develop a range of experimental skills, including handling variables and working safely
• use scientific data and evidence to solve problems and discuss the limitations of scientific methods
• communicate effectively and clearly, using scientific terminology, notation and conventions
• understand that the application of scientific knowledge can benefit people and the environment
• enjoy science and develop an informed interest in scientific matters which support further study.

Cambridge Assessment International Education is an education organisation and politically neutral. The contents of this syllabus, examination papers and associated materials do not endorse any political view. We endeavour to treat all aspects of the exam process neutrally.
Content overview

The subject content is divided into three sections: Biology (B1–B19), Chemistry (C1–C12) and Physics (P1–P6). **Candidates must study all three sections.**

Biology
- **B1** Characteristics of living organisms
- **B2** Cells
- **B3** Movement into and out of cells
- **B4** Biological molecules
- **B5** Enzymes
- **B6** Plant nutrition
- **B7** Human nutrition
- **B8** Transport in plants
- **B9** Transport in animals
- **B10** Diseases and immunity
- **B11** Gas exchange in humans
- **B12** Respiration
- **B13** Coordination and response
- **B14** Drugs
- **B15** Reproduction
- **B16** Inheritance
- **B17** Variation and selection
- **B18** Organisms and their environment
- **B19** Human influences on ecosystems

Chemistry
- **C1** States of matter
- **C2** Atoms, elements and compounds
- **C3** Stoichiometry
- **C4** Electrochemistry
- **C5** Chemical energetics
- **C6** Chemical reactions
- **C7** Acids, bases and salts
- **C8** The Periodic Table
- **C9** Metals
- **C10** Chemistry of the environment
- **C11** Organic chemistry
- **C12** Experimental techniques and chemical analysis

Physics
- **P1** Motion, forces and energy
- **P2** Thermal physics
- **P3** Waves
- **P4** Electricity and magnetism
- **P5** Nuclear physics
- **P6** Space physics
Assessment overview

All candidates take three papers.

Candidates who have studied the Core syllabus content, or who are expected to achieve a grade 3-3 or below, should be entered for Paper 1, Paper 3 and either Paper 5 or Paper 6. These candidates will be eligible for grades 5-5 to 1-1.

Candidates who have studied the Extended syllabus content (Core and Supplement), and who are expected to achieve a grade 4-4 or above, should be entered for Paper 2, Paper 4 and either Paper 5 or Paper 6. These candidates will be eligible for grades 9-9 to 1-1.

Core assessment

Core candidates take Paper 1 and Paper 3. The questions are based on the Core subject content only:

<table>
<thead>
<tr>
<th>Paper 1: Multiple Choice (Core)</th>
<th>Paper 3: Theory (Core)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 minutes</td>
<td>2 hours</td>
</tr>
<tr>
<td>40 marks</td>
<td>120 marks</td>
</tr>
<tr>
<td>40 four-option multiple-choice questions</td>
<td>Short-answer and structured questions</td>
</tr>
<tr>
<td>Externally assessed</td>
<td>Externally assessed</td>
</tr>
</tbody>
</table>

Extended assessment

Extended candidates take Paper 2 and Paper 4. The questions are based on the Core and Supplement subject content:

<table>
<thead>
<tr>
<th>Paper 2: Multiple Choice (Extended)</th>
<th>Paper 4: Theory (Extended)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 minutes</td>
<td>2 hours</td>
</tr>
<tr>
<td>40 marks</td>
<td>120 marks</td>
</tr>
<tr>
<td>40 four-option multiple-choice questions</td>
<td>Short-answer and structured questions</td>
</tr>
<tr>
<td>Externally assessed</td>
<td>Externally assessed</td>
</tr>
</tbody>
</table>

Practical assessment

All candidates take one practical paper from a choice of two:

<table>
<thead>
<tr>
<th>Paper 5: Practical Test</th>
<th>Paper 6: Alternative to Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 hours</td>
<td>1 hour 30 minutes</td>
</tr>
<tr>
<td>60 marks</td>
<td>60 marks</td>
</tr>
<tr>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Questions will be based on the experimental skills in section 4</td>
<td>Questions will be based on the experimental skills in section 4</td>
</tr>
<tr>
<td>Externally assessed</td>
<td>Externally assessed</td>
</tr>
</tbody>
</table>

Information on availability is in the Before you start section.
Assessment objectives

The assessment objectives (AOs) are:

AO1 Knowledge with understanding
Candidates should be able to demonstrate knowledge and understanding of:

- scientific phenomena, facts, laws, definitions, concepts and theories
- scientific vocabulary, terminology and conventions (including symbols, quantities and units)
- scientific instruments and apparatus, including techniques of operation and aspects of safety
- scientific and technological applications with their social, economic and environmental implications.

Subject content defines the factual material that candidates may be required to recall and explain.

Candidates will also be asked questions which require them to apply this material to unfamiliar contexts and to apply knowledge from one area of the syllabus to another.

AO2 Handling information and problem-solving
Candidates should be able, in words or using other written forms of presentation (i.e. symbolic, graphical and numerical), to:

- locate, select, organise and present information from a variety of sources
- translate information from one form to another
- manipulate numerical and other data
- use information to identify patterns, report trends and form conclusions
- present reasoned explanations for phenomena, patterns and relationships
- make predictions based on relationships and patterns
- solve problems, including some of a quantitative nature.

Questions testing these skills may be based on information that is unfamiliar to candidates, requiring them to apply the principles and concepts from the syllabus to a new situation, in a logical, deductive way.

AO3 Experimental skills and investigations
Candidates should be able to:

- demonstrate knowledge of how to select and safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)
- plan experiments and investigations
- make and record observations, measurements and estimates
- interpret and evaluate experimental observations and data
- evaluate methods and suggest possible improvements.
Weighting for assessment objectives

The approximate weightings allocated to each of the assessment objectives (AOs) are summarised below.

Assessment objectives as a percentage of the qualification

<table>
<thead>
<tr>
<th>Assessment objective</th>
<th>Weighting in IGCSE %</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO1 Knowledge with understanding</td>
<td>50</td>
</tr>
<tr>
<td>AO2 Handling information and problem-solving</td>
<td>30</td>
</tr>
<tr>
<td>AO3 Experimental skills and investigations</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Assessment objectives as a percentage of each component

<table>
<thead>
<tr>
<th>Assessment objective</th>
<th>Weighting in components %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Papers 1 and 2</td>
</tr>
<tr>
<td>AO1 Knowledge with understanding</td>
<td>63</td>
</tr>
<tr>
<td>AO2 Handling information and problem-solving</td>
<td>37</td>
</tr>
<tr>
<td>AO3 Experimental skills and investigations</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>
3 Subject content

This syllabus gives you the flexibility to design a course that will interest, challenge and engage your learners. Where appropriate you are responsible for selecting resources and examples to support your learners’ study. These should be appropriate for the learners’ age, cultural background and learning context as well as complying with your school policies and local legal requirements.

All candidates should be taught the Core subject content. Candidates who are only taught the Core subject content can achieve a maximum of grade 5-5. Candidates aiming for grades 9-9 to 4-4 should be taught the Extended subject content. The Extended subject content includes both the Core and the Supplement.

Scientific subjects are, by their nature, experimental. Learners should pursue a fully integrated course which allows them to develop their experimental skills by doing practical work and investigations.

Practical work helps students to:

- use equipment and materials accurately and safely
- develop observational and problem-solving skills
- develop a deeper understanding of the syllabus topics and the scientific approach
- appreciate how scientific theories are developed and tested
- transfer the experimental skills acquired to unfamiliar contexts
- develop positive scientific attitudes such as objectivity, integrity, cooperation, enquiry and inventiveness
- develop an interest and enjoyment in science.

Biology

B1 Characteristics of living organisms

B1.1 Characteristics of living organisms

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Describe the characteristics of living organisms by defining:</td>
</tr>
<tr>
<td></td>
<td>(a) movement as an action by an organism or part of an organism causing a change of position or place</td>
</tr>
<tr>
<td></td>
<td>(b) respiration as the chemical reactions in cells that break down nutrient molecules and release energy for metabolism</td>
</tr>
<tr>
<td></td>
<td>(c) sensitivity as the ability to detect and respond to changes in the internal or external environment</td>
</tr>
<tr>
<td></td>
<td>(d) growth as a permanent increase in size and dry mass</td>
</tr>
<tr>
<td></td>
<td>(e) reproduction as the processes that make more of the same kind of organism</td>
</tr>
<tr>
<td></td>
<td>(f) excretion as the removal of waste products of metabolism and substances in excess of requirements</td>
</tr>
<tr>
<td></td>
<td>(g) nutrition as the taking in of materials for energy, growth and development</td>
</tr>
</tbody>
</table>
B2 Cells

B2.1 Cell structure

Core

1. Describe and compare the structure of a plant cell with an animal cell, limited to: cell wall, cell membrane, nucleus, cytoplasm, chloroplasts, ribosomes, mitochondria, vacuoles.

2. Describe the structure of a bacterial cell, limited to: cell wall, cell membrane, cytoplasm, ribosomes, circular DNA, plasmids.

3. Identify the cell structures listed in 2.1.1 and 2.1.2 in diagrams and images of plant, animal and bacterial cells.

4. Describe the functions of the structures listed in 2.1.1 and 2.1.2 in plant, animal and bacterial cells.

5. State that new cells are produced by division of existing cells.

6. State that specialised cells have specific functions, limited to:
 - (a) ciliated cells – movement of mucus in the trachea and bronchi
 - (b) root hair cells – absorption
 - (c) palisade mesophyll cells – photosynthesis
 - (d) neurones – conduction of electrical impulses
 - (e) red blood cells – transport of oxygen
 - (f) sperm and egg cells (gametes) – reproduction

7. Describe the meaning of the terms: cell, tissue, organ, organ system and organism as illustrated by examples given in the syllabus.

Supplement

B2.2 Size of specimens

Core

1. State and use the formula:
 \[\text{magnification} = \frac{\text{image size}}{\text{actual size}} \]

2. Calculate magnification and size of biological specimens using millimetres as units.

Supplement

3. Convert measurements between millimetres (mm) and micrometres (µm).
B3 Movement into and out of cells

B3.1 Diffusion

Core
1. Describe diffusion as the net movement of particles from a region of their higher concentration to a region of their lower concentration (i.e. down a concentration gradient), as a result of their random movement.
2. State that some substances move into and out of cells by diffusion through the cell membrane.
3. Describe the importance of diffusion of gases and solutes in living organisms.

Supplement
4. Investigate the factors that influence diffusion, limited to: surface area, temperature, concentration gradient and distance.

B3.2 Osmosis

Core
1. State that water diffuses through partially permeable membranes by osmosis.
2. State that water moves into and out of cells by osmosis through the cell membrane.
3. Investigate and describe the effects on plant tissues of immersing them in solutions of different concentrations.

Supplement
4. Describe osmosis as the net movement of water molecules from a region of higher water potential (dilute solution) to a region of lower water potential (concentrated solution), through a partially permeable membrane.
5. Explain the effects on plant cells of immersing them in solutions of different concentrations by using the terms: turgid, turgor pressure, plasmolysis, flaccid.
6. Explain the importance of water potential and osmosis in the uptake and loss of water by organisms.

B3.3 Active transport

Core
1. Describe active transport as the movement of particles through a cell membrane from a region of lower concentration to a region of higher concentration (i.e. against a concentration gradient), using energy from respiration.

Supplement
2. Explain the importance of active transport as a process for movement of molecules or ions across membranes, including ion uptake by root hairs.
B4 Biological molecules

B4.1 Biological molecules

- **Core**
 1. List the chemical elements that make up: carbohydrates, fats and proteins
 2. State that large molecules are made from smaller molecules, limited to:
 a. starch, glycogen and cellulose from glucose
 b. proteins from amino acids
 c. fats and oils from fatty acids and glycerol
 3. Describe the use of:
 a. iodine solution test for starch
 b. Benedict’s solution test for reducing sugars
 c. biuret test for proteins
 d. ethanol emulsion test for fats and oils

- **Supplement**

B5 Enzymes

B5.1 Enzymes

- **Core**
 1. Describe enzymes as proteins that are involved in all metabolic reactions, where they function as biological catalysts
 2. Investigate and describe the effect of changes in temperature and pH on enzyme activity

- **Supplement**
 3. Describe and explain enzyme action with reference to: the active site, enzyme–substrate complex, substrate and product
 4. Describe and explain the specificity of enzymes in terms of the complementary shape and fit of the active site with the substrate
 5. Explain the effect of changes in temperature on enzyme activity in terms of kinetic energy, shape and fit, frequency of effective collisions and denaturation
 6. Explain the effect of changes in pH on enzyme activity in terms of shape and fit and denaturation
B6 Plant nutrition

B6.1 Photosynthesis

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe photosynthesis as the process by which plants synthesise carbohydrates from raw materials using energy from light</td>
<td>5. State the balanced symbol equation for photosynthesis as: $6\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow \text{C}6\text{H}{12}\text{O}_6 + 6\text{O}_2$</td>
</tr>
<tr>
<td>2. State the word equation for photosynthesis as: carbon dioxide + water \rightarrow glucose + oxygen in the presence of light and chlorophyll</td>
<td>6. State that chlorophyll transfers energy from light into energy in chemicals, for the synthesis of carbohydrates</td>
</tr>
<tr>
<td>3. State that chlorophyll is a green pigment that is found in chloroplasts</td>
<td>7. Outline the subsequent use and storage of the carbohydrates made in photosynthesis: (a) starch as an energy store (b) cellulose to build cell walls (c) glucose used in respiration to provide energy (d) sucrose for transport in the phloem (e) nectar to attract insects for pollination</td>
</tr>
<tr>
<td>4. Investigate and understand the need for chlorophyll, light and carbon dioxide for photosynthesis</td>
<td>8. Explain the importance of: (a) nitrate ions for making amino acids (b) magnesium ions for making chlorophyll</td>
</tr>
<tr>
<td></td>
<td>9. Understand and describe the effects of varying light intensity, carbon dioxide concentration and temperature on the rate of photosynthesis</td>
</tr>
<tr>
<td></td>
<td>10. Understand and describe the effect of light and dark conditions on gas exchange in an aquatic plant using hydrogen carbonate indicator solution</td>
</tr>
</tbody>
</table>

B6.2 Leaf structure

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. State that most leaves have a large surface area and are thin, and explain how these features are adaptations for photosynthesis</td>
<td>3. Explain how the structures listed in 6.2.2 adapt leaves for photosynthesis</td>
</tr>
<tr>
<td>2. Identify in diagrams and images the following structures in the leaf of a dicotyledonous plant: chloroplasts, cuticle, guard cells and stomata, upper and lower epidermis, palisade mesophyll, spongy mesophyll, air spaces, vascular bundles, xylem and phloem</td>
<td></td>
</tr>
</tbody>
</table>
B7 Human nutrition

B7.1 Diet

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Describe what is meant by a balanced diet</td>
</tr>
</tbody>
</table>
| 2 | State the principal dietary sources and describe the importance of:
 (a) carbohydrates
 (b) fats and oils
 (c) proteins
 (d) vitamins, limited to C and D
 (e) mineral ions, limited to calcium and iron
 (f) fibre (roughage)
 (g) water |
| 3 | State the causes of scurvy and rickets |

B7.2 Digestive system

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
</table>
| 1 | Identify in diagrams and images the main organs of the digestive system, limited to:
 (a) alimentary canal: mouth, oesophagus, stomach, small intestine (duodenum and ileum) and large intestine (colon, rectum and anus)
 (b) associated organs: salivary glands, pancreas, liver and gall bladder |
| 2 | Describe the functions of the organs of the digestive system listed in 7.2.1, in relation to:
 (a) ingestion – the taking of substances, e.g. food and drink, into the body
 (b) digestion – the breakdown of food
 (c) absorption – the movement of nutrients from the intestines into the blood
 (d) assimilation – uptake and use of nutrients by cells
 (e) egestion – the removal of undigested food from the body as faeces |
B7 Human nutrition (continued)

B7.3 Digestion

Core

1. Describe physical digestion as the breakdown of food into smaller pieces without chemical change to the food molecules.
2. State that physical digestion increases the surface area of food for the action of enzymes in chemical digestion.
3. Describe chemical digestion as the breakdown of large insoluble molecules into small soluble molecules.
4. State the role of chemical digestion in producing small soluble molecules that can be absorbed.

Supplement

5. Describe the functions of enzymes as follows:
 - (a) amylase breaks down starch to simple reducing sugars
 - (b) proteases break down protein to amino acids
 - (c) lipase breaks down fats and oils to fatty acids and glycerol

6. State where, in the digestive system, amylase, protease and lipase are secreted and where they act.

7. Describe the functions of hydrochloric acid in gastric juice, limited to killing harmful microorganisms in food and providing an acidic pH for optimum enzyme activity of proteases in the stomach.

8. Explain that bile is an alkaline mixture that neutralises the acidic mixture of food and gastric juices entering the duodenum from the stomach, to provide a suitable pH for enzyme action in the small intestine.

9. Outline the role of bile in emulsifying fats and oils to increase the surface area for chemical digestion.
B8 Transport in plants

B8.1 Xylem and phloem

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
</table>
| 1. State the functions of xylem and phloem:
(a) xylem – transport of water and mineral ions, and support
(b) phloem – transport of sucrose and amino acids | |
| 2. Identify in diagrams and images the position of xylem and phloem as seen in sections of roots, stems and leaves of non-woody dicotyledonous plants | |

B8.2 Water uptake

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify in diagrams and images root hair cells and state their functions</td>
<td></td>
</tr>
<tr>
<td>2. State that the large surface area of root hairs increases the uptake of water and mineral ions</td>
<td></td>
</tr>
<tr>
<td>3. Outline the pathway taken by water through root, stem and leaf as: root hair cells, root cortex cells, xylem, mesophyll cells</td>
<td></td>
</tr>
</tbody>
</table>

B8.3 Transpiration

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe transpiration as the loss of water vapour from leaves</td>
<td>4. Explain the effects on the rate of transpiration of varying the following: temperature, wind speed and humidity</td>
</tr>
<tr>
<td>2. State that water evaporates from the surfaces of the mesophyll cells into the air spaces and then diffuses out of the leaves through the stomata as water vapour</td>
<td>5. Explain how and why wilting occurs</td>
</tr>
<tr>
<td>3. Investigate and describe the effects of variation of temperature and wind speed on transpiration rate</td>
<td></td>
</tr>
</tbody>
</table>

B8 Transport in plants (continued)

B8.4 Translocation

Core

1. Describe translocation as the movement of sucrose and amino acids in phloem from sources to sinks

Supplement

1. Describe translocation as the movement of sucrose and amino acids in phloem from sources to sinks
2. Describe:
 (a) sources as the parts of plants that release sucrose or amino acids
 (b) sinks as the parts of plants that use or store sucrose or amino acids

B9 Transport in animals

B9.1 Circulatory systems

Core

1. Describe the circulatory system as a system of blood vessels with a pump and valves to ensure one-way flow of blood

Supplement

2. Describe the single circulation of a fish
3. Describe the double circulation of a mammal
4. Explain the advantages of a double circulation

B9.2 Heart

Core

1. Identify in diagrams and images the structures of the mammalian heart, limited to: muscular wall, septum, left and right ventricles, left and right atria, one-way valves and coronary arteries

2. State that blood is pumped away from the heart in arteries and returns to the heart in veins
3. State that the activity of the heart may be monitored by: ECG (electrocardiogram), pulse rate and listening to sounds of valves closing
4. Investigate and describe the effect of physical activity on the heart rate
5. Describe coronary heart disease in terms of the blockage of coronary arteries and state the possible risk factors including: diet, lack of exercise, stress, smoking, genetic predisposition, age and sex
6. Discuss the roles of diet and exercise in reducing the risk of coronary heart disease

Supplement

7. Describe the functioning of the heart in terms of the contraction of muscles of the atria and ventricles and the action of the valves
8. Explain the effect of physical activity on the heart rate
B9 Transport in animals (continued)

B9.3 Blood vessels

Core
1. Describe the structure of arteries, veins and capillaries, limited to: relative thickness of wall, diameter of the lumen and the presence of valves in veins
2. State the functions of capillaries

Supplement
3. Explain how the structure of arteries and veins is related to the pressure of the blood that they transport
4. Explain how the structure of capillaries is related to their functions
5. Identify in diagrams and images the main blood vessels to and from the:
 (a) heart, limited to: vena cava, aorta, pulmonary artery and pulmonary vein
 (b) lungs, limited to: pulmonary artery and pulmonary vein

B9.4 Blood

Core
1. List the components of blood as: red blood cells, white blood cells, platelets and plasma
2. Identify red and white blood cells in photomicrographs and diagrams
3. State the functions of the following components of blood:
 (a) red blood cells in transporting oxygen, including the role of haemoglobin
 (b) white blood cells in phagocytosis and antibody production
 (c) platelets in clotting (details are not required)
 (d) plasma in the transport of blood cells, ions, nutrients, urea, hormones and carbon dioxide

Supplement
4. Identify lymphocytes and phagocytes in photomicrographs and diagrams
5. State the functions of:
 (a) lymphocytes – antibody production
 (b) phagocytes – engulfing pathogens by phagocytosis
6. State the roles of blood clotting as preventing blood loss and the entry of pathogens
B10 Diseases and immunity

B10.1 Diseases and immunity

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Describe a pathogen as a disease-causing organism</td>
<td>7 State the features of viruses, limited to a protein coat and genetic material</td>
</tr>
<tr>
<td>2 Describe a transmissible disease as a disease in which the pathogen can be passed from one host to another</td>
<td></td>
</tr>
<tr>
<td>3 State that a pathogen is transmitted: (a) by direct contact, including through blood and other body fluids (b) indirectly, including from contaminated surfaces, food, animals and air</td>
<td></td>
</tr>
<tr>
<td>4 Describe the body defences against pathogens, limited to: skin, hairs in the nose, mucus, stomach acid and white blood cells</td>
<td></td>
</tr>
<tr>
<td>5 Explain the importance of the following in controlling the spread of disease: (a) a clean water supply (b) hygienic food preparation (c) good personal hygiene (d) waste disposal (e) sewage treatment (details of the stages of sewage treatment are not required)</td>
<td></td>
</tr>
<tr>
<td>8 Describe active immunity as defence against a pathogen by antibody production in the body</td>
<td></td>
</tr>
<tr>
<td>9 State that each pathogen has its own antigens, which have specific shapes</td>
<td></td>
</tr>
<tr>
<td>10 Describe antibodies as proteins that bind to antigens leading to direct destruction of pathogens or marking of pathogens for destruction by phagocytes</td>
<td></td>
</tr>
<tr>
<td>11 State that specific antibodies have complementary shapes which fit specific antigens</td>
<td></td>
</tr>
<tr>
<td>12 Explain that active immunity is gained after an infection by a pathogen or by vaccination</td>
<td></td>
</tr>
<tr>
<td>13 Outline the process of vaccination: (a) weakened pathogens or their antigens are put into the body (b) the antigens stimulate an immune response by lymphocytes which produce antibodies (c) memory cells are produced that give long-term immunity</td>
<td></td>
</tr>
</tbody>
</table>
B10 Diseases and immunity (continued)

B10.1 Diseases and immunity (continued)

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 State that vaccinations are available for some pathogens to help control the spread of diseases</td>
<td>14 Explain the role of vaccination in controlling the spread of diseases</td>
</tr>
</tbody>
</table>

B11 Gas exchange in humans

B11.1 Gas exchange in humans

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Identify in diagrams and images the following parts of the breathing system: lungs, diaphragm, ribs, intercostal muscles, larynx, trachea, bronchi, bronchioles, alveoli and associated capillaries</td>
<td>5 Describe the features of gas exchange surfaces in humans, limited to: large surface area, thin surface, good blood supply and good ventilation with air</td>
</tr>
<tr>
<td>2 Investigate the differences in composition between inspired and expired air using limewater as a test for carbon dioxide</td>
<td>6 Explain the differences in composition between inspired and expired air</td>
</tr>
<tr>
<td>3 Describe the differences in composition between inspired and expired air, limited to: oxygen, carbon dioxide and water vapour</td>
<td>7 Explain the link between physical activity and the rate and depth of breathing in terms of: an increased carbon dioxide concentration in the blood, which is detected by the brain, leading to an increased rate and greater depth of breathing</td>
</tr>
<tr>
<td>4 Investigate and describe the effects of physical activity on the rate and depth of breathing</td>
<td></td>
</tr>
</tbody>
</table>

B12 Respiration

B12.1 Respiration

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 State the uses of energy in living organisms, including: muscle contraction, protein synthesis, cell division, growth, the passage of nerve impulses and the maintenance of a constant body temperature</td>
<td>4 State the balanced symbol equation for aerobic respiration as: (C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O)</td>
</tr>
<tr>
<td>2 Describe aerobic respiration as the chemical reactions in cells that use oxygen to break down nutrient molecules to release energy</td>
<td>5 Describe anaerobic respiration as the chemical reactions in cells that break down nutrient molecules to release energy without using oxygen</td>
</tr>
<tr>
<td>3 State the word equation for aerobic respiration as: glucose + oxygen → carbon dioxide + water</td>
<td></td>
</tr>
</tbody>
</table>
B12 Respiration (continued)

B12.1 Respiration (continued)

Core

Supplement

6 State that anaerobic respiration releases much less energy per glucose molecule than aerobic respiration.

7 State the word equation for anaerobic respiration in muscles during vigorous exercise as:
 glucose → lactic acid

8 State that lactic acid builds up in muscles and blood during vigorous exercise causing an oxygen debt.

9 Outline how the oxygen debt is removed after exercise, limited to:
 (a) continuation of fast heart rate to transport lactic acid in the blood from the muscles to the liver
 (b) continuation of deeper and faster breathing to supply oxygen for aerobic respiration of lactic acid
 (c) aerobic respiration of lactic acid in the liver

B13 Coordination and response

B13.1 Coordination and response

Core

Supplement

1 State that electrical impulses travel along neurones.

2 Describe the mammalian nervous system in terms of:
 (a) the central nervous system (CNS) consisting of the brain and spinal cord
 (b) the peripheral nervous system (PNS) consisting of the nerves outside of the brain and spinal cord

3 Describe the role of the nervous system as coordination and regulation of body functions.

4 Identify in diagrams and images sensory, relay and motor neurones.

5 Describe a simple reflex arc in terms of: receptor, sensory neurone, relay neurone, motor neurone and effector.
B13 Coordination and response (continued)

B13.1 Coordination and response (continued)

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Describe a reflex action as a means of automatically and rapidly integrating and coordinating stimuli with the responses of effectors (muscles and glands)</td>
</tr>
<tr>
<td>7</td>
<td>Describe sense organs as groups of receptor cells responding to specific stimuli: light, sound, touch, temperature and chemicals</td>
</tr>
</tbody>
</table>

B13.2 Hormones

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Describe a hormone as a chemical substance, produced by a gland and carried by the blood, which alters the activity of one or more specific target organs</td>
</tr>
<tr>
<td>2</td>
<td>Identify in diagrams and images specific endocrine glands and state the hormones they secrete, limited to:</td>
</tr>
<tr>
<td></td>
<td>(a) adrenal glands and adrenaline</td>
</tr>
<tr>
<td></td>
<td>(b) pancreas and insulin</td>
</tr>
<tr>
<td></td>
<td>(c) testes and testosterone</td>
</tr>
<tr>
<td></td>
<td>(d) ovaries and oestrogen</td>
</tr>
<tr>
<td>3</td>
<td>Describe adrenaline as the hormone secreted in ‘fight or flight’ situations and its effects, limited to:</td>
</tr>
<tr>
<td></td>
<td>(a) increased breathing rate</td>
</tr>
<tr>
<td></td>
<td>(b) increased heart rate</td>
</tr>
<tr>
<td></td>
<td>(c) increased pupil diameter</td>
</tr>
<tr>
<td>4</td>
<td>State that glucagon is secreted by the pancreas</td>
</tr>
</tbody>
</table>
B13 Coordination and response (continued)

B13.3 Homeostasis

Core

Supplement
1. Describe homeostasis as the maintenance of a constant internal environment
2. Explain the concept of homeostatic control by negative feedback with reference to a set point
3. Describe the control of blood glucose concentration by the liver and the roles of insulin and glucagon
4. Identify in diagrams and images of the skin: hairs, hair erector muscles, sweat glands, receptors, sensory neurones, blood vessels and fatty tissue
5. Describe the maintenance of a constant internal body temperature in mammals in terms of:
 (a) insulation, sweating, shivering, the role of the brain
 (b) vasodilation and vasoconstriction of arterioles supplying skin surface capillaries

B14 Drugs

B14.1 Drugs

Core

Supplement
1. Describe a drug as any substance taken into the body that modifies or affects chemical reactions in the body
2. Describe the use of antibiotics for the treatment of bacterial infections
3. State that some bacteria are resistant to antibiotics which reduces the effectiveness of antibiotics
4. State that antibiotics kill bacteria but do not affect viruses
5. Explain how using antibiotics only when essential can limit the development of resistant bacteria such as MRSA
B15 Reproduction

B15.1 Asexual reproduction

Core
1. Describe asexual reproduction as a process resulting in the production of genetically identical offspring from one parent.
2. Identify examples of asexual reproduction in diagrams, images and information provided.

Supplement
3. Discuss the advantages and disadvantages of asexual reproduction to a population of a species in the wild.

B15.2 Sexual reproduction

Core
1. Describe sexual reproduction as a process involving the fusion of the nuclei of two gametes to form a zygote and the production of offspring that are genetically different from each other.
2. Describe a species as a group of organisms that can reproduce to produce fertile offspring.

Supplement
3. State that nuclei of gametes are haploid and that the nucleus of a zygote is diploid.
4. Discuss the advantages and disadvantages of sexual reproduction to a population of a species in the wild.

B15.3 Sexual reproduction in plants

Core
1. Identify in diagrams and images and draw the following parts of an insect-pollinated flower: sepals, petals, stamens, filaments, anthers, carpels, style, stigma, ovary and ovules.
2. State the functions of the structures listed in 15.3.1.
3. Describe pollination as the transfer of pollen grains from an anther to a stigma.
4. State that fertilisation occurs when a pollen nucleus fuses with a nucleus in an ovule.
5. Describe the structural adaptations of insect-pollinated and wind-pollinated flowers.
6. Investigate and describe the environmental conditions that affect germination of seeds, limited to the requirement for: water, oxygen and a suitable temperature.

Supplement
7. Identify in diagrams and images and describe the anthers and stigmas of a wind-pollinated flower.
B15 Reproduction (continued)

B15.4 Sexual reproduction in humans

Core

1. Identify on diagrams and state the functions of the following parts of the male reproductive system: testes, scrotum, sperm ducts, prostate gland, urethra and penis
2. Identify on diagrams and state the functions of the following parts of the female reproductive system: ovaries, oviducts, uterus, cervix and vagina
3. Describe fertilisation as the fusion of the nuclei from a male gamete (sperm) and a female gamete (egg cell)
4. Describe the roles of testosterone and oestrogen in the development and regulation of secondary sexual characteristics during puberty
5. Describe the menstrual cycle in terms of changes in the ovaries and in the lining of the uterus (knowledge of sex hormones is **not** required)

Supplement

6. Explain the adaptive features of sperm, limited to: flagellum, mitochondria and the presence of enzymes in the acrosome
7. Explain the adaptive features of egg cells, limited to: energy stores and the jelly coat that changes at fertilisation
8. Compare male and female gametes in terms of: size, structure, motility and numbers

B15.5 Sexually transmitted infections

Core

1. Describe a sexually transmitted infection (STI) as an infection that is transmitted through sexual contact
2. State that human immunodeficiency virus (HIV) is a pathogen that causes an STI
3. State that HIV infection may lead to AIDS
4. Describe the methods of transmission of HIV
5. Explain how the spread of STIs is controlled

Supplement

6. Explain how the spread of STIs is controlled
B16 Inheritance

B16.1 Chromosomes and genes

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. State that chromosomes are made of DNA, which contains genetic information in the form of genes</td>
<td>5. Describe a haploid nucleus as a nucleus containing a single set of chromosomes</td>
</tr>
<tr>
<td>2. Define a gene as a length of DNA that codes for a protein</td>
<td>6. Describe a diploid nucleus as a nucleus containing two sets of chromosomes</td>
</tr>
<tr>
<td>3. Define an allele as an alternative form of a gene</td>
<td>7. State that in a diploid cell, there is a pair of each type of chromosome and in a human diploid cell there are 23 pairs</td>
</tr>
<tr>
<td>4. Describe the inheritance of sex in humans with reference to XX and XY chromosomes</td>
<td></td>
</tr>
</tbody>
</table>

B16.2 Cell division

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe mitosis as nuclear division giving rise to genetically identical cells (details of the stages of mitosis are not required)</td>
<td>5. Describe meiosis as reduction division in which the chromosome number is halved from diploid to haploid resulting in genetically different cells (details of the stages of meiosis are not required)</td>
</tr>
<tr>
<td>2. State the role of mitosis in growth, repair of damaged tissues, replacement of cells and asexual reproduction</td>
<td></td>
</tr>
<tr>
<td>3. State that the exact replication of chromosomes occurs before mitosis</td>
<td></td>
</tr>
<tr>
<td>4. State that during mitosis, the copies of chromosomes separate, maintaining the chromosome number in each daughter cell</td>
<td></td>
</tr>
<tr>
<td>5. State that meiosis is involved in the production of gametes</td>
<td></td>
</tr>
</tbody>
</table>
B16 Inheritance (continued)

B16.3 Monohybrid inheritance

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Describe inheritance as the transmission of genetic information from generation to generation</td>
</tr>
<tr>
<td>2</td>
<td>Describe genotype as the genetic make-up of an organism and in terms of the alleles present</td>
</tr>
<tr>
<td>3</td>
<td>Describe phenotype as the observable features of an organism</td>
</tr>
<tr>
<td>4</td>
<td>Describe homozygous as having two identical alleles of a particular gene</td>
</tr>
<tr>
<td>5</td>
<td>State that two identical homozygous individuals that breed together will be pure-breeding</td>
</tr>
<tr>
<td>6</td>
<td>Describe heterozygous as having two different alleles of a particular gene</td>
</tr>
<tr>
<td>7</td>
<td>State that a heterozygous individual will not be pure-breeding</td>
</tr>
<tr>
<td>8</td>
<td>Describe a dominant allele as an allele that is expressed if it is present in the genotype</td>
</tr>
<tr>
<td>9</td>
<td>Describe a recessive allele as an allele that is only expressed when there is no dominant allele of the gene present in the genotype</td>
</tr>
<tr>
<td>10</td>
<td>Interpret pedigree diagrams for the inheritance of a given characteristic</td>
</tr>
<tr>
<td>11</td>
<td>Use genetic diagrams to predict the results of monohybrid crosses and calculate phenotypic ratios, limited to 1:1 and 3:1 ratios</td>
</tr>
<tr>
<td>12</td>
<td>Use Punnett squares in crosses which result in more than one genotype to work out and show the possible different genotypes</td>
</tr>
</tbody>
</table>
B17 Variation and selection

B17.1 Variation

Core

1. Describe variation as differences between individuals of the same species

2. State that continuous variation results in a range of phenotypes between two extremes; examples include body length

3. State that discontinuous variation results in a limited number of phenotypes with no intermediates; examples include ABO blood groups

4. Describe mutation as a genetic change

5. State that mutation is the way in which new alleles are formed

Supplement

B17.2 Selection

Core

1. Describe natural selection with reference to:
 (a) genetic variation within populations
 (b) production of many offspring
 (c) struggle for survival, including competition for resources
 (d) a greater chance of reproduction by individuals that are better adapted to the environment than others
 (e) these individuals passing on their alleles to the next generation

2. Describe selective breeding with reference to:
 (a) selection by humans of individuals with desirable features
 (b) crossing these individuals to produce the next generation
 (c) selection of offspring showing the desirable features

3. Outline how selective breeding by artificial selection is carried out over many generations to improve crop plants and domesticated animals and apply this to given contexts

Supplement

4. Describe the development of strains of antibiotic-resistant bacteria as an example of natural selection
B18 Organisms and their environment
B18.1 Energy flow

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>State that the Sun is the principal source of energy input to biological systems</td>
</tr>
<tr>
<td>2</td>
<td>Describe the flow of energy through living organisms, including light energy from the Sun and chemical energy in organisms, and its eventual transfer to the environment</td>
</tr>
</tbody>
</table>

B18.2 Food chains and food webs

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Describe a food chain as showing the transfer of energy from one organism to the next, beginning with a producer</td>
</tr>
<tr>
<td>2</td>
<td>Construct and interpret simple food chains</td>
</tr>
<tr>
<td>3</td>
<td>Describe a food web as a network of interconnected food chains and interpret food webs</td>
</tr>
<tr>
<td>4</td>
<td>Describe a producer as an organism that makes its own organic nutrients, usually using energy from sunlight, through photosynthesis</td>
</tr>
<tr>
<td>5</td>
<td>Describe a consumer as an organism that gets its energy by feeding on other organisms</td>
</tr>
<tr>
<td>6</td>
<td>State that consumers may be classed as primary, secondary and tertiary according to their position in a food chain</td>
</tr>
<tr>
<td>7</td>
<td>Describe a herbivore as an animal that gets its energy by eating plants</td>
</tr>
<tr>
<td>8</td>
<td>Describe a carnivore as an animal that gets its energy by eating other animals</td>
</tr>
<tr>
<td>9</td>
<td>Describe a decomposer as an organism that gets its energy from dead or waste organic material</td>
</tr>
<tr>
<td>10</td>
<td>Use food chains and food webs to describe the impact humans have through overharvesting of food species and through introducing foreign species to a habitat</td>
</tr>
<tr>
<td>11</td>
<td>Describe a trophic level as the position of an organism in a food chain and food web</td>
</tr>
<tr>
<td>12</td>
<td>Identify the following as the trophic levels in food webs and food chains: producers, primary consumers, secondary consumers, tertiary consumers and quaternary consumers</td>
</tr>
<tr>
<td>13</td>
<td>Explain why the transfer of energy from one trophic level to another is often not efficient</td>
</tr>
</tbody>
</table>
B18 Organisms and their environment (continued)

B18.2 Food chains and food webs (continued)

Core

Supplement

14 Explain, in terms of energy loss, why food chains usually have fewer than five trophic levels.

15 Explain why it is more energy efficient for humans to eat crop plants than to eat livestock that have been fed on crop plants.

B18.3 Carbon cycle

Core

Supplement

1 Describe the carbon cycle, limited to: photosynthesis, respiration, feeding, decomposition, formation of fossil fuels and combustion.

B19 Human influences on ecosystems

B19.1 Habitat destruction

Core

Supplement

1 Describe an ecosystem as a unit containing the community of organisms and their environment, interacting together.

2 Describe biodiversity as the number of different species that live in an area.

3 Describe the reasons for habitat destruction, including:
 (a) increased area for housing, crop plant production and livestock production.
 (b) extraction of natural resources.
 (c) freshwater and marine pollution (a detailed description of eutrophication is not required).

4 State the undesirable effects of deforestation as an example of habitat destruction, to include: reducing biodiversity, extinction, loss of soil, flooding and increase of carbon dioxide in the atmosphere.

5 Explain the undesirable effects of deforestation as an example of habitat destruction, to include: reducing biodiversity, extinction, loss of soil, flooding and increase of carbon dioxide in the atmosphere.
B19 Human influences on ecosystems (continued)

B19.2 Conservation

Core

1. Explain why organisms become endangered or extinct, including: climate change, habitat destruction, hunting, overharvesting, pollution and introduced species.

2. Describe how endangered species can be conserved, limited to:
 (a) monitoring and protecting species and habitats
 (b) education
 (c) captive breeding programmes
 (d) seed banks

Supplement

Chemistry

C1 States of matter

C1.1 Solids, liquids and gases

Core

1. State the distinguishing properties of solids, liquids and gases.

2. Describe the structure of solids, liquids and gases in terms of particle separation, arrangement and motion.

3. Describe changes of state in terms of melting, boiling, evaporating, freezing and condensing.

4. Describe the effects of temperature and pressure on the volume of a gas.

Supplement

5. Explain changes of state in terms of kinetic particle theory, including the interpretation of heating and cooling curves.

6. Explain, in terms of kinetic particle theory, the effects of temperature and pressure on the volume of a gas.

C1.2 Diffusion

Core

1. Describe and explain diffusion in terms of kinetic particle theory.

Supplement

2. Describe and explain the effect of relative molecular mass on the rate of diffusion of gases.
C2 Atoms, elements and compounds

C2.1 Elements, compounds and mixtures

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. Describe the differences between elements, compounds and mixtures</td>
</tr>
</tbody>
</table>

C2.2 Atomic structure and the Periodic Table

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. Describe the structure of the atom as a central nucleus containing neutrons and protons, surrounded by electrons in shells</td>
</tr>
<tr>
<td>2</td>
<td>2. State the relative charges and relative masses of a proton, a neutron and an electron</td>
</tr>
<tr>
<td>3</td>
<td>3. Define proton number/atomic number as the number of protons in the nucleus of an atom</td>
</tr>
<tr>
<td>4</td>
<td>4. Define mass number/nucleon number as the total number of protons and neutrons in the nucleus of an atom</td>
</tr>
<tr>
<td>5</td>
<td>5. Determine the electronic configuration of elements with proton number 1 to 20, e.g. 2,8,3</td>
</tr>
<tr>
<td>6</td>
<td>6. State that:</td>
</tr>
<tr>
<td></td>
<td>(a) Group VIII noble gases have a full outer shell</td>
</tr>
<tr>
<td></td>
<td>(b) the number of outer-shell electrons is equal to the group number in Groups I to VII</td>
</tr>
<tr>
<td></td>
<td>(c) the number of occupied electron shells is equal to the period number</td>
</tr>
</tbody>
</table>

C2.3 Isotopes

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. Define isotopes as different atoms of the same element that have the same number of protons but different numbers of neutrons</td>
</tr>
<tr>
<td>2</td>
<td>2. Interpret and use symbols for atoms, e.g. $^{12}\text{C}^\text{6}$, and ions, e.g. $^{35}\text{Cl}^\text{17}$</td>
</tr>
<tr>
<td>3</td>
<td>3. State that isotopes of the same element have the same chemical properties because they have the same number of electrons and therefore the same electronic configuration</td>
</tr>
</tbody>
</table>
C2 Atoms, elements and compounds (continued)

C2.4 Ions and ionic bonds

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe the formation of positive ions, known as cations, and negative ions, known as anions.</td>
<td>5. Describe the formation of ionic bonds between ions of metallic and non-metallic elements, including the use of dot-and-cross diagrams.</td>
</tr>
<tr>
<td>2. State that an ionic bond is a strong electrostatic attraction between oppositely charged ions.</td>
<td></td>
</tr>
<tr>
<td>3. Describe the formation of ionic bonds between elements from Group I and Group VII, including the use of dot-and-cross diagrams.</td>
<td>6. Explain in terms of structure and bonding the properties of ionic compounds:</td>
</tr>
<tr>
<td>4. Describe the properties of ionic compounds:</td>
<td>(a) high melting points and boiling points</td>
</tr>
<tr>
<td>(a) high melting points and boiling points</td>
<td>(b) good electrical conductivity when aqueous or molten and poor when solid</td>
</tr>
<tr>
<td>(b) good electrical conductivity when aqueous or molten and poor when solid</td>
<td></td>
</tr>
<tr>
<td>(c) generally soluble in water</td>
<td></td>
</tr>
<tr>
<td>5. Describe the formation of ionic bonds between ions of metallic and non-metallic elements, including the use of dot-and-cross diagrams.</td>
<td>7. Describe the giant lattice structure of ionic compounds as a regular arrangement of alternating positive and negative ions, exemplified by sodium chloride.</td>
</tr>
</tbody>
</table>

C2.5 Simple molecules and covalent bonds

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. State that a covalent bond is formed when a pair of electrons is shared between two atoms leading to noble gas electronic configurations.</td>
<td>4. Describe the formation of covalent bonds in simple molecules, including CH₃OH, C₂H₄, O₂, CO₂ and N₂. Use dot-and-cross diagrams to show the electronic configurations in these molecules.</td>
</tr>
<tr>
<td>2. Describe the formation of covalent bonds in simple molecules, including H₂, Cl₂, H₂O, CH₄, NH₃ and HCl. Use dot-and-cross diagrams to show the electronic configurations in these molecules.</td>
<td>5. Explain in terms of structure and bonding the properties of simple molecular compounds:</td>
</tr>
<tr>
<td>3. Describe in terms of structure and bonding the properties of simple molecular compounds:</td>
<td>(a) low melting points and boiling points in terms of weak intermolecular forces (specific types of intermolecular forces are not required)</td>
</tr>
<tr>
<td>(a) low melting points and boiling points</td>
<td>(b) poor electrical conductivity</td>
</tr>
<tr>
<td>(b) poor electrical conductivity</td>
<td></td>
</tr>
</tbody>
</table>

Back to contents page
C2 Atoms, elements and compounds (continued)

C2.6 Giant covalent structures

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe the giant covalent structures of graphite and diamond</td>
<td>2. Relate the structures and bonding of graphite and diamond to their uses, limited to: (a) graphite as a lubricant and as an electrode (b) diamond in cutting tools</td>
</tr>
</tbody>
</table>

C2.7 Metallic bonding

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe metallic bonding as the electrostatic attraction between the positive ions in a giant metallic lattice and a ‘sea’ of delocalised electrons</td>
<td>2. Explain in terms of structure and bonding the properties of metals: (a) good electrical conductivity (b) malleability</td>
</tr>
</tbody>
</table>

C3 Stoichiometry

C3.1 Formulas

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. State the formulas of the elements and compounds named in the subject content</td>
<td>6. Deduce the formula of an ionic compound from the relative numbers of the ions present in a model or a diagrammatic representation or from the charges on the ions</td>
</tr>
<tr>
<td>2. Define the molecular formula of a compound as the number and type of atoms in one molecule</td>
<td>7. Construct symbol equations with state symbols, including ionic equations</td>
</tr>
<tr>
<td>3. Deduce the formula of a simple molecular compound from the relative numbers of atoms present in a model or a diagrammatic representation</td>
<td>8. Deduce the symbol equation with state symbols for a chemical reaction, given relevant information</td>
</tr>
<tr>
<td>4. Construct word equations to show how reactants form products</td>
<td></td>
</tr>
</tbody>
</table>
C3 Stoichiometry (continued)

C3.2 Relative masses of atoms and molecules

Core
- 1. Describe relative atomic mass, \(A_r \), as the average mass of the isotopes of an element compared to 1/12th of the mass of an atom of \(^{12}\text{C}\).
- 2. Define relative molecular mass, \(M_r \), as the sum of the relative atomic masses. Relative formula mass, \(M_r \), will be used for ionic compounds.
- 3. Calculate reacting masses in simple proportions (calculations will **not** involve the mole concept).

Supplement

C3.3 The mole and the Avogadro constant

Core
- 1. State that concentration can be measured in \(\text{g/dm}^3 \).

Supplement
- 2. State that the mole, mol, is the unit of amount of substance and that one mole contains \(6.02 \times 10^{23} \) particles, e.g. atoms, ions, molecules; this number is the Avogadro constant.
- 3. Use the relationship \(\frac{\text{mass (g)}}{\text{molar mass (g/mol)}} \) to calculate:
 - (a) amount of substance
 - (b) mass
 - (c) molar mass
 - (d) relative atomic mass or relative molecular/formula mass
- 4. Use the molar gas volume, taken as 24 dm\(^3\) at room temperature and pressure, r.t.p., in calculations involving gases.
- 5. Calculate stoichiometric reacting masses, limiting reactants, volumes of gases at r.t.p., including conversion between cm\(^3\) and dm\(^3\).
C4 Electrochemistry

C4.1 Electrolysis

Core

1. Define electrolysis as the decomposition of an ionic compound, when molten or in aqueous solution, by the passage of an electric current.

2. Identify in simple electrolytic cells:
 (a) the anode as the positive electrode
 (b) the cathode as the negative electrode
 (c) the electrolyte as the molten or aqueous substance that undergoes electrolysis

3. Identify the products formed at the electrodes and describe the observations made during the electrolysis of:
 (a) molten lead(II) bromide
 (b) concentrated aqueous sodium chloride
 (c) dilute sulfuric acid
 using inert electrodes made of platinum or carbon/graphite

Supplement

4. Describe the transfer of charge during electrolysis:
 (a) the movement of electrons in the external circuit
 (b) the loss or gain of electrons at the electrodes
 (c) the movement of ions in the electrolyte

5. Identify the products formed at the electrodes and describe the observations made during the electrolysis of aqueous copper(II) sulfate using carbon/graphite electrodes and when using copper electrodes.

6. State that metals or hydrogen are formed at the cathode and that non-metals (other than hydrogen) are formed at the anode.

7. Predict the identity of the products at each electrode for the electrolysis of a binary compound in the molten state.

8. Construct ionic half-equations for reactions at the cathode (showing gain of electrons as a reduction reaction).
C4 Electrochemistry (continued)

C4.2 Hydrogen–oxygen fuel cells

Core
1. State that a hydrogen–oxygen fuel cell uses hydrogen and oxygen to produce electricity with water as the only chemical product.

Supplement
2. Describe the advantages and disadvantages of using hydrogen–oxygen fuel cells in comparison with gasoline/petrol engines in vehicles.

C5 Chemical energetics

C5.1 Exothermic and endothermic reactions

Core
1. State that an exothermic reaction transfers thermal energy to the surroundings leading to an increase in the temperature of the surroundings.

2. State that an endothermic reaction takes in thermal energy from the surroundings leading to a decrease in the temperature of the surroundings.

Supplement
3. Interpret reaction pathway diagrams showing exothermic and endothermic reactions.

4. State that the transfer of thermal energy during a reaction is called the enthalpy change, ΔH, of the reaction. ΔH is negative for exothermic reactions and positive for endothermic reactions.

5. Define activation energy, E_a, as the minimum energy that colliding particles must have to react.

6. Draw and label reaction pathway diagrams for exothermic and endothermic reactions using information provided, to include:
 (a) reactants
 (b) products
 (c) overall energy change of the reaction, ΔH
 (d) activation energy, E_a

7. State that bond breaking is an endothermic process and bond making is an exothermic process.
C6 Chemical reactions

C6.1 Physical and chemical changes

Core

1. Identify physical and chemical changes, and understand the differences between them.

C6.2 Rate of reaction

Core

1. Describe the effect on the rate of reaction of:
 - (a) changing the concentration of solutions
 - (b) changing the pressure of gases
 - (c) changing the surface area of solids
 - (d) changing the temperature
 - (e) adding or removing a catalyst

2. State that a catalyst increases the rate of a reaction and is unchanged at the end of a reaction.

3. Describe practical methods for investigating the rate of a reaction including change in mass of a reactant or product and the formation of a gas.

4. Interpret data, including graphs, from rate of reaction experiments.

Supplement

5. Explain the effect on the rate of reaction of:
 - (a) changing the concentration of solutions
 - (b) changing the pressure of gases
 - (c) changing the surface area of solids
 - (d) changing the temperature
 - (e) adding or removing a catalyst using collision theory.

6. State that a catalyst decreases the activation energy, E_a, of a reaction.

7. Describe collision theory in terms of:
 - (a) number of particles per unit volume
 - (b) frequency of collisions between particles
 - (c) kinetic energy of particles
 - (d) activation energy, E_a.

C6.3 Redox

Core

1. Define redox reactions as involving simultaneous oxidation and reduction.

2. Define oxidation as gain of oxygen and reduction as loss of oxygen.

Supplement

5. Define oxidation in terms of:
 - (a) loss of electrons
 - (b) an increase in oxidation number
 (determination of oxidation numbers is **not** required)

6. Define reduction in terms of:
 - (a) gain of electrons
 - (b) a decrease in oxidation number
 (determination of oxidation numbers is **not** required)
C6 Chemical reactions (continued)

C6.3 Redox (continued)

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Identify redox reactions as reactions involving gain and loss of oxygen.</td>
<td></td>
</tr>
<tr>
<td>4. Identify oxidation and reduction in redox reactions. (Oxidation number limited to its use to name ions, e.g. iron(II), iron(III), copper(II).)</td>
<td></td>
</tr>
</tbody>
</table>

C7 Acids, bases and salts

C7.1 The characteristic properties of acids and bases

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe the characteristic properties of acids in terms of their reactions with:</td>
<td></td>
</tr>
<tr>
<td>(a) metals</td>
<td></td>
</tr>
<tr>
<td>(b) bases</td>
<td></td>
</tr>
<tr>
<td>(c) carbonates</td>
<td></td>
</tr>
<tr>
<td>2. Describe acids in terms of their effect on the indicators:</td>
<td></td>
</tr>
<tr>
<td>(a) litmus</td>
<td></td>
</tr>
<tr>
<td>(b) methyl orange</td>
<td></td>
</tr>
<tr>
<td>3. State that bases are oxides or hydroxides of metals and that alkalis are soluble bases</td>
<td></td>
</tr>
<tr>
<td>4. Describe the characteristic properties of bases in terms of their reactions with acids</td>
<td></td>
</tr>
<tr>
<td>5. Describe alkalis in terms of their effect on the indicators:</td>
<td></td>
</tr>
<tr>
<td>(a) litmus</td>
<td></td>
</tr>
<tr>
<td>(b) methyl orange</td>
<td></td>
</tr>
<tr>
<td>6. Describe how to compare neutrality, relative acidity and relative alkalinity in terms of colour and pH using universal indicator</td>
<td></td>
</tr>
<tr>
<td>7. Describe the neutralisation reaction between an acid and an alkali to produce a salt and water (the ionic equation for this reaction is not required)</td>
<td></td>
</tr>
</tbody>
</table>
C7 Acids, bases and salts (continued)

C7.2 Oxides

Core
1. Classify oxides as either acidic, including SO\(_2\) and CO\(_2\), or basic, including CuO and CaO, related to metallic and non-metallic character

Supplement
2. Describe amphoteric oxides as oxides that react with acids and with bases to produce a salt and water
3. Classify Al\(_2\)O\(_3\) and ZnO as amphoteric oxides

C7.3 Preparation of salts

Core
1. Describe the preparation, separation and purification of soluble salts by reaction of an acid with:
 (a) an alkali by titration
 (b) excess metal
 (c) excess insoluble base
 (d) excess insoluble carbonate
 (the general solubility rules for salts are not required)
2. Define a hydrated substance as a substance that is chemically combined with water and an anhydrous substance as a substance containing no water
3. Describe the preparation of insoluble salts by precipitation (the general solubility rules for salts are not required)

Supplement

C8 The Periodic Table

C8.1 Arrangement of elements

Core
1. Describe the Periodic Table as an arrangement of elements in periods and groups and in order of increasing proton number/atomic number
2. Describe the change from metallic to non-metallic character across a period
3. Explain similarities in the chemical properties of elements in the same group of the Periodic Table in terms of their electronic configuration

Supplement
4. Identify trends in groups, given information about the elements
C8 The Periodic Table (continued)

C8.2 Group I properties

Core
1 Describe the Group I alkali metals, lithium, sodium and potassium, as relatively soft metals with general trends down the group, limited to:
 (a) decreasing melting point
 (b) increasing density
 (c) increasing reactivity with water

Supplement
2 Predict the properties of other elements in Group I, given information about the elements

C8.3 Group VII properties

Core
1 Describe the Group VII halogens, chlorine, bromine and iodine, as diatomic non-metals with general trends down the group, limited to:
 (a) increasing density
 (b) decreasing reactivity
2 State the appearance of the halogens at room temperature and pressure, r.t.p., as:
 (a) chlorine, a pale yellow-green gas
 (b) bromine, a red-brown liquid
 (c) iodine, a grey-black solid

Supplement
3 Describe and explain the displacement reactions of halogens with other halide ions
4 Predict the properties of other elements in Group VII, given information about the elements

C8.4 Transition elements

Core
1 Describe the transition elements as metals that:
 (a) have high densities
 (b) have high melting points
 (c) form coloured compounds
 (d) often act as catalysts as elements and in compounds

Supplement
C8 The Periodic Table (continued)

C8.5 Noble gases

Core

1. Describe the Group VIII noble gases as unreactive, monatomic gases and explain this in terms of electronic configuration.

C9 Metals

C9.1 Properties of metals

Core

1. Compare the general physical properties of metals and non-metals, including:
 (a) thermal conductivity
 (b) electrical conductivity
 (c) malleability and ductility
 (d) melting points and boiling points

2. Describe the general chemical properties of metals, limited to their reactions with:
 (a) dilute acids
 (b) cold water and steam

C9.2 Uses of metals

Core

1. Describe the uses of metals in terms of their physical properties, including:
 (a) aluminium in the manufacture of aircraft because of its low density
 (b) aluminium in the manufacture of overhead electrical cables because of its low density and good electrical conductivity
 (c) aluminium in food containers because of its resistance to corrosion
 (d) copper in electrical wiring because of its good electrical conductivity
C9 Metals (continued)

C9.3 Alloys and their properties

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
</table>
| 1 Describe alloys as mixtures of a metal with other elements, including:
(a) brass as a mixture of copper and zinc
(b) stainless steel as a mixture of iron and other elements such as chromium, nickel and carbon | 5 Explain in terms of structure how alloys can be harder and stronger than the pure metals because the different sized atoms in alloys mean the layers can no longer slide over each other |
| 2 State that alloys can be harder and stronger than the pure metals and are more useful | |
| 3 Describe the use of alloys in terms of their physical properties, including stainless steel in cutlery because of its hardness and resistance to rusting | |
| 4 Identify representations of alloys from diagrams of structure | |

C9.4 Reactivity series

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 State the order of the reactivity series as: potassium, sodium, calcium, magnesium, aluminium, carbon, zinc, iron, hydrogen, copper, silver, gold</td>
<td>4 Describe the relative reactivities of metals in terms of their tendency to form positive ions, by displacement reactions, if any, with the aqueous ions of magnesium, zinc, iron, copper and silver</td>
</tr>
</tbody>
</table>
| 2 Describe the reactions, if any, of:
(a) potassium, sodium and calcium with cold water
(b) magnesium with steam
(c) magnesium, zinc, iron, copper, silver and gold with dilute hydrochloric acid and explain these reactions in terms of the position of the metals in the reactivity series | |
| 3 Deduce an order of reactivity from a given set of experimental results | |
C9 Metals (continued)

C9.5 Corrosion of metals

Core
1. State the conditions required for the rusting of iron (presence of oxygen and water)
2. State some common barrier methods, including painting, greasing and coating with plastic
3. Describe how barrier methods prevent rusting by excluding oxygen and water

Supplement
4. Describe the use of zinc in galvanising steel as an example of a barrier method and sacrificial protection
5. Explain sacrificial protection in terms of the reactivity series and in terms of electron loss

C9.6 Extraction of metals

Core
1. Describe the ease in obtaining metals from their ores, related to the position of the metal in the reactivity series
2. State that iron from hematite is extracted by reduction of iron(III) oxide in the blast furnace
3. State that main ore of aluminium is bauxite and that aluminium is extracted by electrolysis

Supplement
4. Describe the extraction of iron from hematite in the blast furnace, limited to:
 a. the burning of carbon (coke) to provide heat and produce carbon dioxide
 \[C + O_2 \rightarrow CO_2 \]
 b. the reduction of carbon dioxide to carbon monoxide
 \[C + CO_2 \rightarrow 2CO \]
 c. the reduction of iron(III) oxide by carbon monoxide
 \[Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2 \]
 d. the thermal decomposition of calcium carbonate/limestone to produce calcium oxide
 \[CaCO_3 \rightarrow CaO + CO_2 \]
 e. the formation of slag
 \[CaO + SiO_2 \rightarrow CaSiO_3 \]
C10 Chemistry of the environment

C10.1 Water

Core
1. Describe chemical tests for the presence of water using anhydrous cobalt(II) chloride and anhydrous copper(II) sulfate.
2. Describe how to test for the purity of water using melting point and boiling point.
3. State that distilled water is used in practical chemistry rather than tap water because it contains fewer chemical impurities.
4. Describe the treatment of the domestic water supply in terms of:
 (a) sedimentation and filtration to remove solids
 (b) use of carbon to remove tastes and odours
 (c) chlorination to kill microbes (pathogens)

Supplement

C10.2 Air quality and climate

Core
1. State the composition of clean, dry air as approximately 78% nitrogen, N₂, 21% oxygen, O₂, and the remainder as a mixture of noble gases and carbon dioxide, CO₂.
2. State the source of each of these air pollutants, limited to:
 (a) carbon dioxide from the complete combustion of carbon-containing fuels
 (b) carbon monoxide and particulates from the incomplete combustion of carbon-containing fuels
 (c) methane from the decomposition of vegetation and waste gases from digestion in animals
 (d) oxides of nitrogen from car engines
 (e) sulfur dioxide from the combustion of fossil fuels which contain sulfur compounds
C10 Chemistry of the environment (continued)

C10.2 Air quality and climate (continued)

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. State the adverse effect of these air pollutants, limited to:</td>
<td>5. State and explain strategies to reduce the effects of acid rain: reducing emissions of sulfur dioxide by using low-sulfur fuels and flue gas desulphurisation with calcium oxide</td>
</tr>
<tr>
<td>(a) carbon dioxide: higher levels of carbon dioxide leading to increased global warming, which leads to climate change</td>
<td>6. Describe how the greenhouse gases carbon dioxide and methane cause global warming, limited to:</td>
</tr>
<tr>
<td>(b) carbon monoxide: toxic gas</td>
<td>(a) the absorption, reflection and emission of thermal energy</td>
</tr>
<tr>
<td>(c) particulates: increased risk of respiratory problems and cancer</td>
<td>(b) reducing thermal energy loss to space</td>
</tr>
<tr>
<td>(d) methane: higher levels of methane leading to increased global warming, which leads to climate change</td>
<td>7. Explain how oxides of nitrogen form in car engines and describe their removal by catalytic converters, limited to:</td>
</tr>
<tr>
<td>(e) oxides of nitrogen: acid rain and respiratory problems</td>
<td>$2\text{CO} + 2\text{NO} \rightarrow 2\text{CO}_2 + \text{N}_2$</td>
</tr>
</tbody>
</table>
C11 Organic chemistry

C11.1 Formulas and terminology

Core
1. Draw and interpret the displayed formula of a molecule to show all the atoms and all the bonds
2. State that a saturated compound has molecules in which all carbon–carbon bonds are single bonds
3. State that an unsaturated compound has molecules in which one or more carbon–carbon bonds are not single bonds
4. State that a homologous series is a family of similar compounds with similar chemical properties
5. Describe the general characteristics of a homologous series as:
 (a) having the same general formula (recall of specific general formulas is not required)
 (b) displaying a trend in physical properties

Supplement

C11.2 Naming organic compounds

Core
1. Name and draw the displayed formulas of:
 (a) methane and ethane
 (b) ethene
 (c) ethanol
2. State the type of compound present, given a chemical name ending in -ane, -ene or -ol, or from a molecular formula or displayed formula
3. Name and draw the structural formulas and displayed formulas of unbranched:
 (a) alkanes
 (b) alkenes, including but-1-ene and but-2-ene (not cis/trans) containing up to four carbon atoms per molecule

Supplement
C11 Organic chemistry (continued)

C11.3 Fuels

Core

1. Name the fossil fuels: coal, natural gas and petroleum
2. Name methane as the main constituent of natural gas
3. State that hydrocarbons are compounds that contain hydrogen and carbon only
4. State that petroleum is a mixture of hydrocarbons
5. Describe the separation of petroleum into useful fractions by fractional distillation
6. Name the uses of the fractions as:
 (a) refinery gas fraction for gas used in heating and cooking
 (b) gasoline / petrol fraction for fuel used in cars
 (c) naphtha fraction as a chemical feedstock
 (d) diesel oil / gas oil for fuel used in diesel engines
 (e) bitumen for making roads

Supplement

7. Describe how the properties of fractions obtained from petroleum change from the bottom to the top of the fractionating column, limited to:
 (a) decreasing chain length
 (b) lower boiling points

C11.4 Alkanes

Core

1. State that the bonding in alkanes is single covalent and that alkanes are saturated hydrocarbons
2. Describe the properties of alkanes as being generally unreactive, except in terms of combustion

Supplement
C11 Organic chemistry (continued)

C11.5 Alkenes

Core
1 State that the bonding in alkenes includes a double carbon–carbon covalent bond and that alkenes are unsaturated hydrocarbons
2 Describe the test to distinguish between saturated and unsaturated hydrocarbons by their reaction with aqueous bromine

Supplement
3 Describe the manufacture of alkenes and hydrogen by the cracking of larger alkane molecules using a high temperature and a catalyst
4 Describe the properties of alkenes in terms of addition reactions with:
 (a) bromine
 (b) hydrogen in the presence of a nickel catalyst
 (c) steam in the presence of an acid catalyst

C11.6 Alcohols

Core
1 Describe the complete combustion of ethanol
2 State the uses of ethanol as:
 (a) a solvent
 (b) a fuel

C11.7 Polymers

Core
1 Define polymers as large molecules built up from many smaller molecules called monomers
2 Describe the formation of poly(ethene) as an example of addition polymerisation using ethene monomers

Supplement
3 Identify the repeat units in addition polymers and in condensation polymers
4 Deduce the structure or repeat unit of an addition polymer from a given alkene and vice versa
5 Describe the differences between addition and condensation polymerisation
6 Describe and draw the structure of nylon, a polyamide:

\[
\begin{align*}
\text{C} & \quad \text{O} \\
\text{H} & \quad \text{N} \\
\text{H} & \quad \text{C} \\
\text{O} & \quad \text{N} \\
\text{H} & \quad \text{C} \\
\text{O} & \quad \text{N}
\end{align*}
\]
C12 Experimental techniques and chemical analysis

C12.1 Experimental design

Core

1 Name appropriate apparatus for the measurement of time, temperature, mass and volume, including:
 (a) stop-watches
 (b) thermometers
 (c) balances
 (d) burettes
 (e) volumetric pipettes
 (f) measuring cylinders
 (g) gas syringes

Supplement

2 Describe a:
 (a) solvent as a substance that dissolves a solute
 (b) solute as a substance that is dissolved in a solvent
 (c) solution as a mixture of one or more solutes dissolved in a solvent
 (d) saturated solution as a solution containing the maximum concentration of a solute dissolved in the solvent at a specified temperature
 (e) residue as a solid substance that remains after evaporation, distillation, filtration or any similar process
 (f) filtrate as a liquid or solution that has passed through a filter

C12.2 Acid-base titrations

Core

1 Describe an acid–base titration to include the use of a:
 (a) burette
 (b) volumetric pipette
 (c) suitable indicator

Supplement

2 Describe how to identify the end-point of a titration using an indicator
C12 Experimental techniques and chemical analysis (continued)

C12.3 Chromatography

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
</table>
| 1 Describe how paper chromatography is used to separate mixtures of soluble coloured substances, using a suitable solvent. | 3 State and use the equation for R_f:

$$R_f = \frac{\text{distance travelled by substance}}{\text{distance travelled by solvent}}$$

2 Interpret simple chromatograms to identify:	
(a) unknown substances by comparison with known substances	
(b) pure and impure substances	

C12.4 Separation and purification

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Describe and explain methods of separation and purification using:</td>
<td></td>
</tr>
<tr>
<td>(a) a suitable solvent</td>
<td></td>
</tr>
<tr>
<td>(b) filtration</td>
<td></td>
</tr>
<tr>
<td>(c) crystallisation</td>
<td></td>
</tr>
<tr>
<td>(d) simple distillation</td>
<td></td>
</tr>
<tr>
<td>(e) fractional distillation</td>
<td></td>
</tr>
<tr>
<td>2 Suggest suitable separation and purification techniques, given information about the substances involved</td>
<td></td>
</tr>
<tr>
<td>3 Identify substances and assess their purity from melting point and boiling point information</td>
<td></td>
</tr>
</tbody>
</table>
C12 Experimental techniques and chemical analysis (continued)

C12.5 Identification of ions and gases

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Describe tests to identify the anions:</td>
</tr>
<tr>
<td></td>
<td>(a) carbonate, CO_3^{2-}, by reaction with dilute acid and then testing for carbon dioxide gas</td>
</tr>
<tr>
<td></td>
<td>(b) chloride, Cl^-, bromide, Br^-, and iodide, I^-, by acidifying with dilute nitric acid then adding aqueous silver nitrate</td>
</tr>
<tr>
<td></td>
<td>(c) nitrate, NO_3^-, reduction with aluminium foil and aqueous sodium hydroxide and then testing for ammonia gas</td>
</tr>
<tr>
<td></td>
<td>(d) sulfate, SO_4^{2-}, by acidifying with dilute nitric acid and then adding aqueous barium nitrate</td>
</tr>
<tr>
<td>2</td>
<td>Describe tests using aqueous sodium hydroxide and aqueous ammonia to identify the aqueous cations:</td>
</tr>
<tr>
<td></td>
<td>(a) ammonium, NH_4^+</td>
</tr>
<tr>
<td></td>
<td>(b) calcium, Ca^{2+}</td>
</tr>
<tr>
<td></td>
<td>(c) copper(II), Cu^{2+}</td>
</tr>
<tr>
<td></td>
<td>(d) iron(II), Fe^{2+}</td>
</tr>
<tr>
<td></td>
<td>(e) iron(III), Fe^{3+}</td>
</tr>
<tr>
<td></td>
<td>(f) zinc, Zn^{2+}</td>
</tr>
<tr>
<td></td>
<td>(formulas of complex ions are not required)</td>
</tr>
<tr>
<td>3</td>
<td>Describe tests to identify the gases:</td>
</tr>
<tr>
<td></td>
<td>(a) ammonia, NH_3, using damp red litmus paper</td>
</tr>
<tr>
<td></td>
<td>(b) carbon dioxide, CO_2, using limewater</td>
</tr>
<tr>
<td></td>
<td>(c) chlorine, Cl_2, using damp litmus paper</td>
</tr>
<tr>
<td></td>
<td>(d) hydrogen, H_2, using a lighted splint</td>
</tr>
<tr>
<td></td>
<td>(e) oxygen, O_2, using a glowing splint</td>
</tr>
<tr>
<td>4</td>
<td>Describe the use of a flame test to identify the cations:</td>
</tr>
<tr>
<td></td>
<td>(a) lithium, Li^+</td>
</tr>
<tr>
<td></td>
<td>(b) sodium, Na^+</td>
</tr>
<tr>
<td></td>
<td>(c) potassium, K^+</td>
</tr>
<tr>
<td></td>
<td>(d) copper(II), Cu^{2+}</td>
</tr>
</tbody>
</table>
Physics

P1 Motion, forces and energy

P1.1 Physical quantities and measurement techniques

Core
1. Describe the use of rulers and measuring cylinders to find a length or a volume
2. Describe how to measure a variety of time intervals using clocks and digital timers
3. Determine an average value for a small distance and for a short interval of time by measuring multiples (including the period of oscillation of a pendulum)

Supplement
4. Understand that a scalar quantity has magnitude (size) only and that a vector quantity has magnitude and direction
5. Know that the following quantities are scalars: distance, speed, time, mass, energy and temperature
6. Know that the following quantities are vectors: force, weight, velocity, acceleration and gravitational field strength

P1.2 Motion

Core
1. Define speed as distance travelled per unit time; recall and use the equation \(v = \frac{s}{t} \)
2. Recall and use the equation average speed = \(\frac{\text{total distance travelled}}{\text{total time taken}} \)
3. Sketch, plot and interpret distance–time and speed–time graphs
4. Know that an object moving with increasing speed is accelerating, and that an object moving with decreasing speed is decelerating
5. Determine, qualitatively, from the shape of a distance–time graph or speed–time graph when an object is:
 (a) at rest
 (b) moving with constant speed
 (c) accelerating
 (d) decelerating

Supplement
8. Define velocity as speed in a given direction
9. Define acceleration as change in velocity per unit time; recall and use the equation \(a = \frac{\Delta v}{\Delta t} \)
10. Determine from given data or the shape of a speed–time graph when an object is moving with:
 (a) constant acceleration
 (b) changing acceleration
P1 Motion, forces and energy (continued)

P1.2 Motion (continued)
Core
6 Calculate speed from the gradient of a straight-line section of a distance–time graph
7 Calculate the area under a speed–time graph to work out the distance travelled for motion with:
 (a) constant speed
 (b) constant acceleration

Supplement
11 Calculate acceleration from the gradient of a straight-line section of a speed–time graph
12 Know that deceleration is a negative acceleration and use this in calculations
13 Know that the acceleration of free fall \(g \) for an object near to the surface of the Earth is approximately constant and is approximately 9.8 m/s\(^2\)

P1.3 Mass and weight
Core
1 State that mass is a measure of the quantity of matter in an object
2 State that weight is the gravitational force on an object that has mass
3 Define gravitational field strength \(g \) as the gravitational force per unit mass; recall and use the equation
 \[g = \frac{W}{m} \]
 and know that near to the surface of the Earth, \(g \) is approximately 9.8 N/kg

Supplement
4 Describe, and use the concept of, weight as the effect of a gravitational field on a mass
5 Know that gravitational field strength is equivalent to the acceleration of free fall

P1.4 Density
Core
1 Define density as mass per unit volume; recall and use the equation
 \[\rho = \frac{m}{V} \]
2 Describe how to determine the density of a liquid, of a regularly shaped solid and of an irregularly shaped solid which sinks in a liquid (volume by displacement), including appropriate calculations
3 Determine whether an object floats or sinks based on density data

Supplement
P1 Motion, forces and energy (continued)

P1.5 Forces

P1.5.1 Effects of forces

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Know that forces may produce changes in the size, shape and motion of an object</td>
<td>7. Recall and use the equation $F = ma$ and know that the resultant force and the acceleration are in the same direction</td>
</tr>
<tr>
<td>2. Determine the resultant of two or more forces acting along the same straight line</td>
<td>8. Sketch, plot and interpret load–extension graphs for an elastic solid and describe the associated experimental procedures</td>
</tr>
<tr>
<td>3. Describe friction as the force between two surfaces that may impede relative motion and produce heating</td>
<td>9. Define the spring constant as force per unit extension; recall and use the equation $k = \frac{F}{x}$</td>
</tr>
<tr>
<td>4. Know that friction (drag) acts on an object moving through a liquid</td>
<td>10. Define and use the term ‘limit of proportionality’ for a load–extension graph and identify this point on the graph (an understanding of the elastic limit is not required)</td>
</tr>
<tr>
<td>5. Know that friction (drag) acts on an object moving through a gas (e.g. air resistance)</td>
<td></td>
</tr>
<tr>
<td>6. Know that an object either remains at rest or continues in a straight line at constant speed unless there is a resultant force on the object</td>
<td></td>
</tr>
</tbody>
</table>

P1.5.2 Turning effect of forces

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe the moment of a force as a measure of its turning effect and give everyday examples</td>
<td>4. Apply the principle of moments to situations with one force each side of the pivot, including balancing of a beam</td>
</tr>
<tr>
<td>2. Define the moment of a force as moment = force \times \text{perpendicular distance from the pivot}; recall and use this equation</td>
<td></td>
</tr>
<tr>
<td>3. State that, when there is no resultant force and no resultant moment, an object is in equilibrium</td>
<td></td>
</tr>
</tbody>
</table>
P1 Motion, forces and energy (continued)

P1.5 Forces (continued)

P1.5.3 Centre of gravity

Core

1. Understand what is meant by centre of gravity and know its position for regularly shaped objects (limited to rectangular blocks, spheres and cylinders)

2. Describe an experiment to determine the position of the centre of gravity of an irregularly shaped plane lamina

3. Describe, qualitatively, the effect of the position of the centre of gravity on the stability of simple objects

Supplement

P1.6 Energy, work and power

P1.6.1 Energy

Core

1. State that energy may be stored as kinetic, gravitational potential, chemical, elastic (strain), nuclear, electrostatic and internal (thermal)

2. Describe how energy is transferred between stores during events and processes, including examples of transfer by forces (mechanical work done), electrical currents (electrical work done), heating and by electromagnetic, sound and other waves

3. Know the principle of conservation of energy and apply this principle to simple examples including the interpretation of simple flow diagrams (Sankey diagrams are not required)

Supplement

4. Recall and use the equation for kinetic energy
 \[E_k = \frac{1}{2}mv^2 \]

5. Recall and use the equation for the change in gravitational potential energy
 \[\Delta E_p = mg\Delta h \]

P1.6.2 Work

Core

1. Understand that mechanical or electrical work done is equal to the energy transferred

2. Recall and use the equation for mechanical working
 \[W = Fd = \Delta E \]
P1 Motion, forces and energy (continued)

P1.6 Energy, work and power (continued)

P1.6.3 Energy resources

Core

1. Describe how useful energy may be obtained, or electrical power generated, from:
 (a) fossil fuels
 (b) biofuels
 (c) water, including waves, tides, and hydroelectric dams
 (d) geothermal resources
 (e) nuclear fission
 (f) light from the Sun (solar cells)
 (g) infrared and other electromagnetic waves from the Sun to heat water (solar thermal collectors)
 (h) wind (wind turbines)

 including references to a boiler, turbine and generator where they are used

2. Give advantages and disadvantages of each method in terms of renewability, availability, reliability, scale and environmental impact

3. Understand, qualitatively, the concept of efficiency of energy transfer

Supplement

4. Know that radiation from the Sun is the main source of energy for all our energy resources except geothermal, nuclear and tidal

5. Know that energy is released by nuclear fusion in the Sun (detailed knowledge of the process of fusion is not required)

6. Know that energy is released by nuclear fission in nuclear reactors (detailed knowledge of the process of fission is not required)

7. Define efficiency as:
 (a) efficiency = \(\frac{\text{useful energy output}}{\text{total energy input}} \times 100\% \)
 (b) efficiency = \(\frac{\text{useful power output}}{\text{total power input}} \times 100\% \)

recall and use the equations

P1.6.4 Power

Core

1. Define power as work done per unit time and also as energy transferred per unit time; recall and use the equations

 (a) \(P = \frac{W}{t} \)
 (b) \(P = \frac{\Delta E}{t} \)
P1 Motion, forces and energy (continued)

P1.7 Pressure

Core
1. Describe how pressure varies with force and area in the context of everyday examples
2. Define pressure as force per unit area; recall and use the equation
 \[p = \frac{F}{A} \]

P2 Thermal physics

P2.1 Kinetic particle model of matter

P2.1.1 States of matter

Core
1. State the distinguishing properties of solids, liquids and gases
2. Know the terms for the changes in state between solids, liquids and gases (gas to solid and solid to gas changes are not required)

Core
1. Describe the structure of solids, liquids and gases in terms of the arrangement, separation and motion of the particles and represent these states using simple particle diagrams
2. Describe the relationship between the motion of particles and temperature
3. Know that the random motion of particles (e.g. smoke particles or pollen grains, that can be viewed with a light microscope) in a suspension is evidence for the kinetic particle model of matter

Supplement
4. Know that the forces and distances between particles and the motion of the particles affect the properties of solids, liquids and gases
5. Describe and explain this motion (sometimes known as Brownian motion) in terms of random collisions between particles in the suspension and the much smaller, fast-moving particles of the gas or liquid
6. Describe the pressure of a gas in terms of the forces exerted by particles colliding with surfaces, creating a force per unit area
P2 Thermal physics (continued)

P2.1 Kinetic particle model of matter (continued)

P2.1.3 Pressure changes

Core

Supplement
1 Describe qualitatively, in terms of particles, the effect on the pressure of a fixed mass of gas of:
 (a) a change of temperature at constant volume
 (b) a change of volume at constant temperature

P2.2 Thermal properties and temperature

P2.2.1 Thermal expansion of solids, liquids and gases

Core

1 Describe, qualitatively, the thermal expansion of solids, liquids and gases at constant pressure

Supplement
2 Explain some of the everyday applications and consequences of thermal expansion

P2.2.2 Melting, boiling and evaporation

Core

1 Know the melting and boiling temperatures for water at standard atmospheric pressure (limited to Celsius only)
2 Describe condensation and solidification (freezing) in terms of particles
3 Describe evaporation in terms of the escape of the more energetic particles from the surface of a liquid
4 Know that evaporation causes cooling of a liquid
5 Describe melting and boiling in terms of energy input without a change in temperature

Supplement
6 Describe the differences between boiling and evaporation
7 Describe how temperature, surface area and air movement over a surface affect evaporation

P2.3 Transfer of thermal energy

P2.3.1 Conduction

Core

1 Identify and give examples of typical good thermal conductors and bad thermal conductors (thermal insulators)

Supplement
2 Describe thermal conduction in solids in terms of atomic or molecular lattice vibrations and also in terms of the movement of delocalised (mobile) electrons in metallic conductors
P2 Thermal physics (continued)

P2.3 Transfer of thermal energy (continued)

P2.3.2 Convection

<table>
<thead>
<tr>
<th>Core</th>
<th>1. Know that convection is an important method of energy transfer in liquids and gases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Describe convection in liquids and gases</td>
</tr>
</tbody>
</table>

Supplement

| 3. Explain convection in liquid and gases in terms of density changes |

P2.3.3 Radiation

<table>
<thead>
<tr>
<th>Core</th>
<th>1. Know that thermal energy transfer by thermal radiation does not require a medium and is mainly due to infrared radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Describe the effect of surface colour (black or white) and texture (dull or shiny) on the emission, absorption and reflection of thermal radiation</td>
</tr>
</tbody>
</table>

Supplement

| 3. Know that the temperature of the Earth is affected by the radiation absorbed by the Earth and the radiation emitted by the Earth |
| 4. Describe experiments to distinguish between good and bad emitters of thermal radiation |
| 5. Describe experiments to distinguish between good and bad absorbers of thermal radiation |

P2.3.4 Consequences of thermal energy transfer

| Core | 1. Identify and explain some of the basic everyday applications and consequences of conduction, convection and radiation |

Supplement

| 3. Know that for a transverse wave, the direction of vibration is at right angles to the direction of propagation and understand that electromagnetic radiation, water waves and seismic S-waves (secondary) are transverse |

P3 Waves

P3.1 General properties of waves

<table>
<thead>
<tr>
<th>Core</th>
<th>1. Know that waves transfer energy without transferring matter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Describe what is meant by wave motion as illustrated by vibration (oscillation) in ropes and springs and by experiments using water waves</td>
</tr>
</tbody>
</table>

Supplement

| 6. Know that for a transverse wave, the direction of vibration is at right angles to the direction of propagation and understand that electromagnetic radiation, water waves and seismic S-waves (secondary) are transverse |
P3 Waves (continued)

P3.1 General properties of waves (continued)

Core

3 Describe the features of a wave in terms of wavelength, frequency, crest (peak), trough, amplitude and wave speed

4 Describe how waves can undergo:
 (a) reflection at a plane surface
 (b) refraction due to a change of speed

5 Recall and use the equation for wave speed \(v = f \lambda \)

Supplement

7 Know that for a longitudinal wave, the direction of vibration is parallel to the direction of propagation and understand that sound waves and seismic P-waves (primary) are longitudinal

8 Describe how waves undergo diffraction through a narrow gap

9 Describe how wavelength and gap size affects diffraction through a gap

P3.2 Light

P3.2.1 Reflection of light

Core

1 Use ray diagrams to define the terms normal, angle of incidence and angle of reflection

2 Describe the formation of an optical image by a vertical plane mirror and give its characteristics compared with the object, i.e. same size, same distance from mirror, laterally inverted

3 State that for reflection, the angle of incidence is equal to the angle of reflection; recall and use this relationship

Supplement

4 Describe the formation of an optical image by a plane mirror and explain why it is virtual

5 Use simple diagrams, measurements and calculations for reflection by plane mirrors

P3.2.2 Refraction of light

Core

1 Define refraction as the change in direction of a light ray passing from one medium to another

2 Define and use the terms normal, angle of incidence and angle of refraction using ray diagrams

3 Describe the passage of light through a transparent material (limited to the boundaries between two media only)

Supplement

4 Define refractive index, \(n \), as the ratio of the speeds of a wave in two different regions

5 Recall and use the equation

\[
 n = \frac{\sin i}{\sin r}
\]
Waves (continued)

Light (continued)

P3.2.2 Refraction of light

6. Describe total internal reflection using ray diagrams
7. Define the critical angle as the angle of incidence at which the angle of refraction is 90° and above which all light is totally internally reflected
8. Describe total internal reflection in optical fibres and state some common applications of optical fibres

P3.2.3 Thin converging lens

Core

1. Describe the action of a thin converging lens on a parallel beam of light and know that rays of light from an object at distance can be assumed to be parallel
2. Define and use the terms principal axis, principal focus (focal point) and focal length
3. Draw and use ray diagrams for the formation of an image by a thin converging lens, limited to real images
4. Describe the characteristics of an image using the terms enlarged / same size / diminished and upright / inverted

Supplement

5. Draw and use ray diagrams for the formation of a virtual image by a thin converging lens
6. Describe the characteristics of an image using the terms real / virtual
7. Describe the use of a single lens as a magnifying glass

P3.2.4 Dispersion of light

Core

1. Describe the dispersion of light as illustrated by the refraction of white light by a glass prism
2. Know the seven colours (red, orange, yellow, green, blue, indigo, violet) of the visible spectrum in order of frequency and in order of wavelength

Supplement
P3 Waves (continued)

P3.3 Electromagnetic spectrum

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Know the main regions of the electromagnetic spectrum (radio, microwave, infrared, visible, ultraviolet, X-ray, gamma) in order of frequency and in order of wavelength.</td>
<td>5. Know that the speed of electromagnetic waves in a vacuum is (3.0 \times 10^8) m/s and is approximately the same in air.</td>
</tr>
<tr>
<td>2. Know that all electromagnetic waves travel at the same high speed in a vacuum.</td>
<td></td>
</tr>
<tr>
<td>3. Know some applications of the different regions of the electromagnetic spectrum including:</td>
<td></td>
</tr>
<tr>
<td>(a) radio waves; radio and television transmissions, radar</td>
<td></td>
</tr>
<tr>
<td>(b) microwaves; satellite television, mobile (cell) phone, microwave ovens</td>
<td></td>
</tr>
<tr>
<td>(c) infrared; remote controllers for televisions, thermal imaging</td>
<td></td>
</tr>
<tr>
<td>(d) visible light; vision, photography</td>
<td></td>
</tr>
<tr>
<td>(e) ultraviolet; detecting fake bank notes</td>
<td></td>
</tr>
<tr>
<td>(f) X-rays; medical scanning, security scanners</td>
<td></td>
</tr>
<tr>
<td>(g) gamma rays; detection of cancer and its treatment</td>
<td></td>
</tr>
<tr>
<td>4. Describe the harmful effects on people of excessive exposure to electromagnetic radiation, including:</td>
<td></td>
</tr>
<tr>
<td>(a) ultraviolet; damage to surface cells and eyes, leading to skin cancer and eye conditions</td>
<td></td>
</tr>
<tr>
<td>(b) X-rays and gamma rays; mutation or damage to cells in the body</td>
<td></td>
</tr>
</tbody>
</table>

P3.4 Sound

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe the production of sound by vibrating sources.</td>
<td>8. Describe the longitudinal nature of sound waves in air as a series of compressions and rarefactions.</td>
</tr>
<tr>
<td>2. State the approximate range of frequencies audible to humans as 20 Hz to 20 kHz.</td>
<td>9. Describe, qualitatively, compressions as regions of higher pressure due to particles being closer together and rarefactions as regions of lower pressure due to particles being spread further apart.</td>
</tr>
</tbody>
</table>
P3 Waves (continued)

P3.4 Sound (continued)

Core

3. Know that a medium is needed to transmit sound waves

4. Determine the speed of sound in air using a method involving a measurement of distance and time

5. Describe how changes in amplitude and frequency affect the loudness and pitch of sound waves

6. Describe an echo as the reflection of a sound wave

7. Define ultrasound as sound with a frequency higher than 20 kHz

Supplement

10. Know that, in general, sound travels faster in solids than in liquids and faster in liquids than in gases

P4 Electricity and magnetism

P4.1 Simple phenomena of magnetism

Core

1. Describe the forces between magnetic poles and between magnets and magnetic materials, including the use of the terms north pole (N pole) and south pole (S pole), attraction and repulsion, magnetised and unmagnetised

2. State the differences between the properties of temporary magnets (made of soft iron) and the properties of permanent magnets (made of steel)

3. State the difference between magnetic and non-magnetic materials

4. Describe how a permanent magnet differs from an electromagnet

Supplement

5. Describe a magnetic field as a region in which a magnetic pole experiences a force

6. State that the direction of a magnetic field at a point is the direction of the force on the N pole of a magnet at that point

7. Describe induced magnetism
P4 Electricity and magnetism (continued)

P4.2 Electrical quantities

P4.2.1 Electrical charge

Core

1. State that there are positive and negative charges
2. State that positive charges repel other positive charges, negative charges repel other negative charges, but positive charges attract negative charges
3. Describe electrostatic charging by friction, and simple methods to determine if an object is charged
4. Know that charging of solids by friction involves only a transfer of negative charge (electrons)
5. Distinguish between electrical conductors and insulators and give typical examples

Supplement

6. State that charge is measured in coulombs
7. Describe an electric field as a region in which an electric charge experiences a force
8. State that the direction of an electric field at a point is the direction of the force on a positive charge at that point

P4.2.2 Electric current

Core

1. Know that electric current is related to the flow of charge
2. Know that electric current in metals is related to the flow of electrons
3. Describe the use of ammeters (analogue and digital) with different ranges
4. Know the difference between direct current (d.c.) and alternating current (a.c.)

Supplement

5. Define electric current as the charge passing a point per unit time; recall and use the equation
 \[I = \frac{Q}{t} \]
6. Describe electrical conduction in metals in terms of the movement of delocalised (mobile) electrons
7. State that conventional current is from positive to negative and that the flow of electrons is from negative to positive

P4.2.3 Voltage (electromotive force and potential difference)

Core

1. Describe the voltage of the source as the cause of current in the circuit
2. Know that the voltage of the source is shared between the components in a series circuit
3. Describe the use of voltmeters (analogue and digital) with different ranges

Supplement

4. Define electromotive force (e.m.f.) as the electrical work done by a source in moving a unit charge around a complete circuit
5. Know that e.m.f. is measured in volts (V)
6. Define potential difference (p.d.) as the work done by a unit charge passing between two points in a circuit
7. Know that the p.d. between two points is measured in volts (V)
P4 Electricity and magnetism (continued)

P4.2 Electrical quantities (continued)

P4.2.4 Resistance

Core

1. Recall and use the equation for resistance

\[R = \frac{V}{I} \]

2. Describe an experiment to determine resistance using a voltmeter and an ammeter and do the appropriate calculations

Supplement

3. Sketch and explain the current–voltage graph of a resistor of constant resistance

4. Recall and use the following relationship for a metallic electrical conductor:
 (a) resistance is directly proportional to length
 (b) resistance is inversely proportional to cross-sectional area

P4.2.5 Electrical energy and electrical power

Core

1. Understand that electric circuits transfer energy from a source of electrical energy, such as an electrical cell or mains supply, to the circuit components and then into the surroundings

2. Recall and use the equation for electrical power

\[P = IV \]

3. Recall and use the equation for electrical energy

\[E = IVt \]

4. Define the kilowatt-hour (kWh) and calculate the cost of using electrical appliances where the energy unit is the kWh

Supplement

P4.3 Electrical circuits

P4.3.1 Circuit diagrams and circuit components

Core

1. Draw and interpret circuit diagrams containing cells, batteries, power supplies, switches, resistors (fixed and variable), heaters, lamps, motors, ammeters, voltmeters and fuses, and know how these components behave in the circuit

Supplement

2. Draw and interpret circuit diagrams containing generators and light-emitting diodes (LEDs), and know how these components behave in the circuit
P4 Electricity and magnetism (continued)

P4.3 Electrical circuits (continued)
P4.3.2 Series and parallel circuits

Core

1. Know that the current at every point in a series circuit is the same
2. Know how to construct and use series and parallel circuits
3. Calculate the combined resistance of two or more resistors in series
4. Know the advantages of connecting lamps in parallel in a circuit
5. Know that, for a parallel circuit, the current from the source is larger than the current in each branch
6. Know that the combined resistance of two resistors in parallel is less than that of either resistor by itself

Supplement

7. Recall and use in calculations, the fact that:
 (a) the sum of the currents entering a junction in a parallel circuit is equal to the sum of the currents that leave the junction
 (b) the total p.d. across the components in a series circuit is equal to the sum of the individual p.d.s across each component
 (c) the p.d. across each branch of a parallel arrangement of components is the p.d. across the whole arrangement
8. Calculate the combined resistance of two resistors in parallel

P4.4 Electrical safety

Core

1. Describe the heating effect of current
2. State the hazards of:
 (a) damaged insulation
 (b) overheating cables
 (c) damp conditions
 (d) excess current from overloading of plugs, extension leads, single and multiple sockets when using a mains supply
3. Explain the use and operation of trip switches and fuses and choose appropriate fuse ratings and trip switch settings (knowledge of RCDs (Residual Current Devices) is not required)
4. Explain why the outer casing of an electrical appliance must be either non-conducting (double-insulated) or earthed

Supplement
P4 Electricity and magnetism (continued)

P4.5 Electromagnetic effects

P4.5.1 Electromagnetic induction

Core

Supplement
1. Know that a conductor moving across a magnetic field or a changing magnetic field linking with a conductor can induce an e.m.f. across the conductor.
2. State the factors affecting the magnitude of an induced e.m.f.

P4.5.2 The a.c. generator

Core

Supplement
1. Describe a simple form of a.c. generator (rotating coil) and the use of slip rings and brushes where needed.
2. Sketch and interpret graphs of e.m.f. against time for simple a.c. generators.

P4.5.3 Magnetic effect of current

Core

Supplement
1. Describe the pattern and direction of the magnetic field due to currents in straight wires and in solenoids.
2. Describe the effect on the magnetic field around straight wires and solenoids of changing the magnitude and direction of the current.

P4.5.4 Force on a current-carrying conductor

Core

Supplement
1. Know that a force acts on a current-carrying conductor in a magnetic field, including the effect of reversing:
 (a) the current
 (b) the direction of the field
2. Recall and use the relative directions of force, magnetic field and current.
P4 Electricity (continued)

P4.5 Electromagnetic effects (continued)
P4.5.5 The d.c. motor

Supplement

1. Know that a current-carrying coil in a magnetic field may experience a turning effect and that the effect is increased by increasing:
 (a) the number of turns on the coil
 (b) the current
 (c) the strength of the magnetic field

2. Describe the operation of an electric motor, including the action of a split-ring commutator and brushes

P4.5.6 The transformer

Supplement

1. Describe the construction of a basic transformer with a soft-iron core, as used for voltage transformations

2. Use the terms primary, secondary, step-up and step-down

3. Recall and use the equation
 \[\frac{V_p}{V_s} = \frac{N_p}{N_s} \]
 where \(p \) and \(s \) refer to primary and secondary

4. Recall and use the equation for 100% efficiency in a transformer
 \[I_p V_p = I_s V_s \]
 where \(p \) and \(s \) refer to primary and secondary

5. Describe the use of transformers in high-voltage transmission of electricity

6. Recall and use the equation
 \[P = I^2 R \]
 to explain why power losses in cables are smaller when the voltage is greater
P5 Nuclear physics

P5.1 The nucleus

Core
1. Describe the composition of the nucleus in terms of protons and neutrons
2. State the relative charges of protons, neutrons and electrons as +1, 0 and –1 respectively
3. Define the terms proton number (atomic number) Z and nucleon number (mass number) A and be able to calculate the number of neutrons in a nucleus
4. Use the nuclide notation $^{A}_{Z}X$
5. State that an element may have more than one isotope and know that some isotopes are radioactive

Supplement
6. Know the relationship between the proton number and the relative charge on a nucleus
7. Describe the processes of nuclear fission and nuclear fusion as the splitting and joining of nuclei

P5.2 Radioactivity

P5.2.1 Detection of radioactivity

Core
1. Know what is meant by the terms ionising nuclear radiation and background radiation
2. Know the sources that make a significant contribution to background radiation including:
 (a) radon gas (in the air)
 (b) rocks and buildings
 (c) food and drink
 (d) cosmic rays
3. Know that ionising nuclear radiation can be measured using a detector connected to a counter
4. Use count rate measured in counts/s or counts/minute

Supplement
P5 Nuclear physics (continued)

P5.2 Radioactivity (continued)

P5.2.2 The three types of nuclear emission

Core

1 Identify alpha (α), beta (β) and gamma (γ) emissions by recalling:
 (a) their nature
 (b) their relative ionising effects
 (c) their relative penetrating abilities
 (β^- are not included, β-particles will be taken to refer to β^-)

Supplement

P5.2.3 Radioactive decay

Core

1 Know that radioactive decay is a change in an unstable nucleus that can result in the emission of α-particles or β-particles and/or γ-radiation and know that these changes are spontaneous and random

2 Know that during α-decay or β-decay, the nucleus changes to that of a different element

3 Know the change in the nucleus that occurs during β-emission:
 neutron → proton + electron

Supplement

4 Use decay equations, using nuclide notation, to show the emission of α-particles, β-particles and γ-radiation

P5.2.4 Half-life

Core

1 Define the half-life of a particular isotope as the time taken for half the nuclei of that isotope in any sample to decay; recall and use this definition in simple calculations, which might involve information in tables or decay curves (calculations will not include background radiation)
P5 Nuclear physics (continued)

P5.2 Radioactivity (continued)

P5.2.5 Applications and safety precautions

Core

1. Know the following applications of radioactivity:
 (a) household fire (smoke) alarms
 (b) irradiating food to kill bacteria
 (c) sterilisation of equipment using gamma rays
 (d) measuring and controlling thicknesses of materials with the choice of radiations used linked to penetration and absorption
 (e) diagnosis and treatment of cancer using gamma rays

2. State the effects of ionising nuclear radiation on living things, including cell death, mutations and cancer

3. Describe how radioactive materials are moved, used and stored in a safe way in terms of time, distance and shielding

P6 Space physics

P6.1 The Solar System

Core

1. Describe the Solar System as containing:
 (a) one star, the Sun
 (b) the eight named planets and know their order from the Sun
 (c) minor planets that orbit the Sun, including dwarf planets such as Pluto and asteroids in the asteroid belt
 (d) moons, that orbit the planets
P6 Space physics (continued)

P6.2 Stars and the Universe

P6.2.1 The Sun as a star

Core

1. Know that:
 (a) the Sun is the closest star to the Earth
 (b) astronomical distances can be measured in light-years, where one light-year is the distance travelled in (the vacuum of) space by light in one year

2. Calculate the time it takes light to travel a significant distance such as between objects in the Solar System

3. Know that the Sun contains most of the mass of the Solar System and this explains why the planets orbit the Sun

4. Know that the force that keeps an object in orbit around the Sun is due to the gravitational attraction of the Sun

5. Know that the Sun is a star of medium size, consisting mostly of hydrogen and helium, and that it radiates most of its energy in the infrared, visible and ultraviolet regions of the electromagnetic spectrum

Supplement

6. Define orbital speed from the equation
 \[v = \frac{2\pi r}{T} \]
 where \(r \) is the radius of the orbit and \(T \) is the orbital period; recall and use this equation

7. Know that the strength of the Sun’s gravitational field decreases and that the orbital speeds of the planets decrease as the distance from the Sun increases

8. Know that stars are powered by nuclear reactions that release energy and that in stable stars the nuclear reactions involve the fusion of hydrogen into helium

P6.2.2 Life cycle of stars

Core

1. Know that stable stars are formed as protostars from interstellar clouds of gas and dust due to gravitational attraction

2. Know that the next stages of the life cycle of a star depend on its mass, limited to:
 (a) a small mass star (about the same mass as the Sun): red giant \(\rightarrow \) white dwarf + planetary nebula
 (b) a large mass star: red supergiant \(\rightarrow \) supernova \(\rightarrow \) neutron star
 (c) a very large mass star: red supergiant \(\rightarrow \) supernova \(\rightarrow \) black hole

Supplement

3. Know that the nebula from a supernova may form new stars with orbiting planets
P6 Space physics (continued)

P6.2 Stars and the Universe (continued)

P6.2.3 Galaxies and the Universe

Core

1 Know that:
 (a) galaxies are each made up of many billions of stars
 (b) the Sun is a star in the galaxy known as the Milky Way
 (c) other stars that make up the Milky Way are much further away from the Earth than the Sun is from the Earth

2 Know that the Milky Way is one of many billions of galaxies making up the Universe and that the diameter of the Milky Way is approximately 100,000 light-years

Supplement

3 Know that the Big Bang Theory is supported by many astronomical observations and states that:
 (a) the Universe expanded from a single point of high density and temperature
 (b) the Universe is still expanding
 (c) the Universe is approximately 13.8 billion years old
4 Details of the assessment

All candidates take three papers.

Candidates who have studied the Core subject content, or who are expected to achieve a grade 3-3 or below should be entered for Paper 1, Paper 3 and either Paper 5 or Paper 6. These candidates will be eligible for grades 5-5 to 1-1.

Candidates who have studied the Extended subject content (Core and Supplement!), and who are expected to achieve a grade 4-4 or above should be entered for Paper 2, Paper 4 and either Paper 5 or Paper 6. These candidates will be eligible for grades 9-9 to 1-1.

Core assessment

Core candidates take the following papers. The questions are based on the Core subject content only.

<table>
<thead>
<tr>
<th>Paper 1: Multiple Choice (Core)</th>
<th>Paper 3: Theory (Core)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 minutes</td>
<td>2 hours</td>
</tr>
<tr>
<td>40 marks</td>
<td>120 marks</td>
</tr>
<tr>
<td>40 compulsory multiple-choice items of the four-choice type</td>
<td>Compulsory short-answer and structured questions</td>
</tr>
<tr>
<td>This paper tests assessment objectives AO1 and AO2</td>
<td>This paper tests assessment objectives AO1 and AO2</td>
</tr>
<tr>
<td>This paper assesses grades 5-5 to 1-1</td>
<td>This paper assesses grades 5-5 to 1-1</td>
</tr>
<tr>
<td>Externally assessed</td>
<td>Externally assessed</td>
</tr>
</tbody>
</table>

Extended assessment

Extended candidates take the following papers. The questions are based on the Core and Supplement subject content.

<table>
<thead>
<tr>
<th>Paper 2: Multiple Choice (Extended)</th>
<th>Paper 4: Theory (Extended)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 minutes</td>
<td>2 hours</td>
</tr>
<tr>
<td>40 marks</td>
<td>120 marks</td>
</tr>
<tr>
<td>40 compulsory multiple-choice items of the four-choice type</td>
<td>Compulsory short-answer and structured questions</td>
</tr>
<tr>
<td>This paper tests assessment objectives AO1 and AO2</td>
<td>This paper tests assessment objectives AO1 and AO2</td>
</tr>
<tr>
<td>This paper assesses grades 9-9 to 1-1</td>
<td>This paper assesses grades 9-9 to 1-1</td>
</tr>
<tr>
<td>Externally assessed</td>
<td>Externally assessed</td>
</tr>
</tbody>
</table>
Practical assessment

All candidates take one practical paper from a choice of two.

Paper 5: Practical Test

- 2 hours
- 60 marks
- All items are compulsory
- This paper tests assessment objective AO3
- Candidates will be required to do experiments in a laboratory as part of this test
- This paper assesses grades 9-9 to 1-1
- Externally assessed

Paper 6: Alternative to Practical

- 1 hour 30 minutes
- 60 marks
- All items are compulsory
- This paper tests assessment objective AO3
- Candidates will **not** be required to do experiments as part of this test
- This paper assesses grades 9-9 to 1-1
- Externally assessed

OR

Questions in the practical papers are structured to assess performance across the full grade range. Notes for use in qualitative analysis are provided for both Paper 5 and Paper 6.

The Practical Test and Alternative to Practical:

- require the same experimental skills to be developed and learned
- require an understanding of the same experimental contexts
- test the same assessment objective, AO3.

Candidates are expected to be familiar with and may be asked questions on the following experimental contexts:

Biology

- simple quantitative experiments, including the measurement of:
 - volumes of gases and liquids
 - masses
 - temperatures
 - times
 - lengths
- diffusion
- osmosis
- food tests
- rates of enzyme-catalysed reactions, including judging end-points, e.g. colour changes
- pH and the use of hydrogen carbonate indicator, litmus and universal indicator
- photosynthesis (rate and limiting factors)
- transpiration
- heart rate and breathing rate
- respiration
- observation and dissection of seeds and flowers
- germination
- continuous and discontinuous variation
- observe, record and measure images of familiar and unfamiliar biological specimens
- make clear line drawings of biological specimens, calculating the magnification or actual size and adding labels as required
- procedures using simple apparatus in situations where the method may not be familiar to the candidate.
Chemistry

- simple quantitative experiments, including the measurement of:
 - volumes of gases or solutions/liquids
 - masses
 - temperatures
 - times
 - lengths
- rates of reaction
- salt preparation
- separation and purification techniques, including:
 - filtration
 - crystallisation
 - simple distillation
 - fractional distillation
 - chromatography
- electrolysis
- identification of metal ions, non-metal ions and gases
- chemical tests for water
- test-tube reactions of dilute acids
- tests for oxidising and reducing agents
- heating and cooling curves
- titrations
- solubility
- melting points and boiling points
- displacement reactions of metals and halogens
- temperature changes during reactions
- conditions under which iron rusts or other metals corrode
- procedures using simple apparatus, in situations where the method may not be familiar to the candidate.

Physics

- measurement of physical quantities such as length, volume or force
- measurement of small distances or short intervals of time
- determining a derived quantity such as the extension per unit load for a spring, the value of a known resistance or the acceleration of an object
- testing and identifying the relationship between two variables such as between the potential difference across a wire and its length
- comparing measured quantities such as angles of reflection
- comparing derived quantities such as density
- cooling and heating, including measurement of temperature
- experiments using springs and balances
- timing motion or oscillations
• electric circuits, including the connection and reconnection of these circuits, and the measurement of current and potential difference

• optics experiments using equipment such as optics pins, mirrors, prisms, lenses, glass or Perspex blocks (both rectangular and semicircular), including the use of transparent, translucent and opaque substances to investigate the transmission of light

• procedures using simple apparatus, in situations where the method may not be familiar to the candidate.

Candidates may be required to do the following:

• **demonstrate knowledge of how to select and safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate):**
 - identify apparatus from diagrams or descriptions
 - draw, complete or label diagrams of apparatus and biological specimens
 - use, or explain the use of, common techniques, apparatus and materials
 - select the most appropriate apparatus or method for the task and justify the choice made
 - describe tests (food tests, gas tests, qualitative tests, other tests)
 - describe and explain hazards and identify safety precautions
 - describe and explain techniques used to ensure the accuracy of observations and data

• **plan experiments and investigations:**
 - identify the independent variable and dependent variable
 - describe how and explain why variables should be controlled
 - suggest an appropriate number and range of values for the independent variable
 - suggest the most appropriate apparatus or technique and justify the choice made
 - describe experimental procedures, including a suitable control experiment
 - identify risks and suggest appropriate safety precautions
 - describe how to record the results of an experiment
 - describe how to process the results of an experiment to form a conclusion or to evaluate a prediction
 - make reasoned predictions of expected results

• **make and record observations, measurements and estimates:**
 - take readings from apparatus (analogue and digital) or from diagrams of apparatus
 - take readings with appropriate precision, reading to the nearest half-scale division where required
 - correct for zero errors where required
 - make observations, measurements or estimates that are in agreement with expected results or values
 - take sufficient observations or measurements, including repeats where appropriate
 - record qualitative observations from tests (including chemical tests, food tests, other tests)
 - record observations and measurements systematically, for example in a suitable table, to an appropriate degree of precision and using appropriate units

• **interpret and evaluate experimental observations and data:**
 - process data, including for use in further calculations or for graph plotting, using a calculator as appropriate
 - present data graphically, including the use of best-fit lines where appropriate
 - analyse and interpret observations and data, including data presented graphically
 - use interpolation and extrapolation graphically to determine a gradient or intercept
 - form conclusions justified by reference to observations and data and with appropriate explanation
 - evaluate the quality of observations and data, identifying any anomalous results and taking appropriate action
 - comment on and explain whether results are equal within the limits of experimental accuracy (assumed to be ±10% at this level of study)
• evaluate methods and suggest possible improvements:
 – evaluate experimental arrangements, methods and techniques, including the control of variables
 – identify sources of error, including measurement error, random error and systematic error
 – identify possible causes of uncertainty in data or in a conclusion
 – suggest possible improvements to the apparatus, experimental arrangements, methods or techniques

Language of measurement

The following definitions have been taken or adapted from *The Language of Measurement* (2010), a guide from the Association for Science Education (ASE).

www.ase.org.uk

The definitions in the table below should be used by teachers during the course to encourage students to use the terminology correctly and consistently.

Candidates will **not** be required to recall the specific definition of these terms in the examinations.

<table>
<thead>
<tr>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true value</td>
<td>the value that would be obtained in an ideal measurement</td>
</tr>
<tr>
<td>measurement error</td>
<td>the difference between a measured value and the true value of a quantity</td>
</tr>
<tr>
<td>accuracy</td>
<td>a measurement result is described as accurate if it is close to the true value</td>
</tr>
<tr>
<td>precision</td>
<td>how close the measured values of a quantity are to each other</td>
</tr>
<tr>
<td>repeatability</td>
<td>a measurement is repeatable if the same or similar result is obtained when the measurement is repeated under the same conditions, using the same method, within the same experiment</td>
</tr>
<tr>
<td>reproducibility</td>
<td>a measurement is reproducible if the same or similar result is obtained when the measurement is made under either different conditions or by a different method or in a different experiment</td>
</tr>
<tr>
<td>validity of experimental design</td>
<td>an experiment is valid if the experiment tests what it says it will test. The experiment must be a fair test where only the independent variable and dependent variable may change, and controlled variables are kept constant</td>
</tr>
<tr>
<td>range</td>
<td>the maximum and minimum value of the independent or dependent variables</td>
</tr>
<tr>
<td>anomaly</td>
<td>an anomaly is a value in a set of results that appears to be outside the general pattern of the results, i.e. an extreme value that is either very high or very low in comparison to others</td>
</tr>
<tr>
<td>independent variable</td>
<td>independent variables are the variables that are changed in a scientific experiment by the scientist. Changing an independent variable may cause a change in the dependent variable</td>
</tr>
<tr>
<td>dependent variable</td>
<td>dependent variables are the variables that are observed or measured in a scientific experiment. Dependent variables may change based on changes made to the independent variables</td>
</tr>
</tbody>
</table>
Apparatus, materials and reagents

This list gives items that candidates should be familiar with using, whether they are taking the Practical Test or the Alternative to Practical. The list is divided into general apparatus for use across the syllabus, and then specific apparatus and materials for each of biology, chemistry and physics. Any queries on apparatus or materials can be sent to info@cambridgeinternational.org

These items should be available for use in the Practical Test. This list is not exhaustive and we may also require other items to be sourced for specific examinations. The Confidential Instructions we send before the Practical Test will give the detailed requirements for the examination.

Every effort is made to minimise the cost to and resources required by centres. Experiments will be designed around basic apparatus and materials which should be available in most school laboratories and are easily obtainable.

Hazard codes are used where relevant and in accordance with information provided by CLEAPSS (www.cleapss.org.uk). Students should be familiar with the meanings of these codes and terms but will not be assessed on them.

C corrosive
HH health hazard
F flammable
N hazardous to the aquatic environment
MH moderate hazard
T acutely toxic
O oxidising

The attention of centres is also drawn to any national and local regulations relating to safety, first aid and disposal of chemicals. ‘Hazard data sheets’ should be available from your chemical supplier.

Candidates must be provided with appropriate safety equipment, such as suitable eye protection and gloves, during practical work.

The Confidential Instructions will indicate which hazard symbols are applicable for the materials required for each Practical Test exam.

General apparatus

Other materials may be required for examinations.

- adhesive putty (e.g. Patafix, Blu Tack®)
- adhesive tape (e.g. Sellotape®)
- aluminium foil
- balance to measure up to 500 g, with precision of at least 0.1 g
- beakers or cups made of an insulating material such as polystyrene, approximately 200 cm³
- beakers, squat form with lip, 100 cm³, 250 cm³, 400 cm³, 1 dm³
- bungs/stoppers to fit small test-tubes and large test-tubes/boiling tubes
- bungs/stoppers with delivery tubes to fit small test-tubes and boiling tubes/large test-tubes
- Bunsen burners
- card
- filter funnels
- filter paper
- forceps
- glass rods / stirring rods
- means of writing on glassware (e.g. wax pencils or water-resistant markers)
- measuring cylinders, 250 cm\(^3\), 100 cm\(^3\), 50 cm\(^3\) or 25 cm\(^3\), 10 cm\(^3\) (ISO6706 or ISO4788 or grade B)
- metre ruler, graduated in mm
- Pasteur or dropping pipette (2.5 cm\(^3\)) or small plastic syringe (e.g. 5 cm\(^3\))
- racks for test-tubes and boiling tubes
- test-tube holders for test-tubes and boiling tubes
- red and blue litmus paper
- retort stands, bosses and clamps
- ruler, 30 cm, graduated in mm
- S-hook
- scissors
- small dropping pipettes or teat pipettes
- stirring thermometers, −10 °C to +110 °C, with 1 °C graduations
- stop-clocks / stop-watches, reading to 0.1 s or better
- string
- syringes (without needles, various sizes, 1 cm\(^3\), 5 cm\(^3\), 10 cm\(^3\))
- test-tubes (Pyrex or hard glass) – small test-tubes (125 mm × 16 mm) and large test-tubes / boiling tubes (150 mm × 25 mm)
- thread
- tracing paper
- tripods and gauzes
- universal indicator paper or solution
- wash bottles containing distilled or deionised water
- white tiles or other suitable cutting surfaces such as wooden board (rigid, 150 cm × 20 cm × 1.5 cm)

Biology

Apparatus

As well as the general apparatus, you may also need the following for biology.

- hand lenses (at least ×6 magnification)
- lamps for photosynthesis experiments
- means of cutting biological materials (e.g. scalpels or sharp knives)
- mounted needles or seekers or long pins with large heads
- partially permeable membrane (e.g. Visking® or dialysis tubing)
- Petri dishes
- spotting tiles
Chemicals, reagents and indicators

The list below is not meant to be comprehensive but shows the types of chemicals, reagents and indicators that the candidates should be familiar with. Please note, hazard symbols were accurate at the time of publication and may change.

- Benedict’s solution [MH]
- biuret reagent (sodium or potassium hydroxide solution and copper sulfate solution) [C]
- carbohydrates (starch, glucose, sucrose), proteins, lipids
- DCPIP (for use in Paper 5 and Paper 6 only)
- dilute acid [C] [MH]
- dilute alkali [C] [MH]
- distilled or deionised water
- enzymes (e.g. amylase, a protease, lipase) [C] [HH] [MH]
- ethanol [F] [HH] [MH]
- hydrogen peroxide solution [C] [MH]
- indicators (universal indicator solution, hydrogen carbonate indicator, litmus solution)
- iodine in potassium iodide solution (iodine solution) [MH] [N]
- limewater
- methylene blue dye
- petroleum jelly (Vaseline® or similar)
- sodium chloride
- sodium hydrogen carbonate (sodium bicarbonate)

Chemistry

Apparatus

As well as the general apparatus, you may also need the following for chemistry.

- burettes, 50 cm3 (ISO385 or grade B)
- conical flasks, within the range 50 cm3 to 250 cm3
- flame test wires or alternative apparatus
- pipette fillers
- small funnels for filling burettes
- spatulas
- volumetric pipettes, 25 cm3 (ISO648 or grade B)
Preparation of reagents

Detailed guidance on preparing the standard bench reagents and indicators listed here will not be given in the Confidential Instructions. The Confidential Instructions will refer supervisors to the preparations in this list.

Candidates are not expected to be familiar with the preparation of these reagents.

Please note, hazard symbols were accurate at the time of publication and may change.

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Label</th>
<th>Identify</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dilute hydrochloric acid</td>
<td>1.0 mol / dm3 HCl</td>
<td>Dilute 85 cm3 of concentrated (35–37%; approximately 11 mol / dm3) HCl [C] [MH] to 1 dm3.</td>
</tr>
<tr>
<td>[C]</td>
<td>dilute nitric acid</td>
<td>1.0 mol / dm3 HNO$_3$</td>
<td>Dilute 64 cm3 of concentrated (70%) HNO$_3$ [C] [O] to 1 dm3.</td>
</tr>
<tr>
<td>[MH]</td>
<td>dilute sulfuric acid</td>
<td>0.5 mol / dm3 H$_2$SO$_4$</td>
<td>Cautiously pour 28 cm3 of concentrated (98%) H$_2$SO$_4$ [C] into 500 cm3 of distilled water with continuous stirring. Make the solution up to 1 dm3 with distilled water. Care: concentrated H$_2$SO$_4$ is very corrosive.</td>
</tr>
<tr>
<td>[MH] [N]</td>
<td>aqueous ammonia</td>
<td>1.0 mol / dm3 NH$_3$</td>
<td>Dilute 66 cm3 of concentrated (35%) NH$_3$ [C] [MH] [N] to 1 dm3.</td>
</tr>
<tr>
<td>[C]</td>
<td>aqueous sodium hydroxide</td>
<td>1.0 mol / dm3 NaOH</td>
<td>Dissolve 40.0 g of NaOH [C] in each dm3 of solution. Care: the process of solution is exothermic and any concentrated solution is very corrosive.</td>
</tr>
<tr>
<td></td>
<td>aqueous barium nitrate</td>
<td>0.1 mol / dm3 Ba(NO$_3$)$_2$</td>
<td>Dissolve 26.1 g of Ba(NO$_3$)$_2$ [MH] [O] in each dm3 of solution.</td>
</tr>
<tr>
<td></td>
<td>aqueous silver nitrate</td>
<td>0.05 mol / dm3 AgNO$_3$</td>
<td>Dissolve 8.5 g of AgNO$_3$ [C] [N] [O] in each dm3 of solution.</td>
</tr>
<tr>
<td>[MH]</td>
<td>limewater</td>
<td>saturated aqueous calcium hydroxide, Ca(OH)$_2$</td>
<td>Prepare fresh limewater by leaving distilled water to stand over solid Ca(OH)$_2$ [C] [MH] for several days, shaking occasionally. Decant or filter the solution.</td>
</tr>
<tr>
<td></td>
<td>aqueous potassium iodide</td>
<td>0.1 mol / dm3 KI</td>
<td>Dissolve 16.6 g of KI in each dm3 of solution.</td>
</tr>
<tr>
<td>[C] [F] [HH] [MH] [N] [T]</td>
<td>methyl orange indicator</td>
<td>methyl orange indicator (pH range 3.1–4.4)</td>
<td>Use commercially produced solution or dissolve 0.4 g of solid methyl orange indicator [C] [HH] [MH] [N] [T] in 200 cm3 of 95% ethanol [F] [HH] [MH] and make up to 1 dm3 with distilled water.</td>
</tr>
</tbody>
</table>
Hazard | Label | Identify | Instructions
--- | --- | --- | ---
[C] [HH] [MH] [N] [T] | screened methyl orange indicator | screened methyl orange indicator (pH range 3.2–4.2) | Use commercially produced solution or dissolve 1 g of solid methyl orange indicator [C] [HH] [MH] [N] [T] and 2.6 g of xylene cyanol [HH] [MH] [N] in 1 dm3 of water.

starch indicator | freshly prepared aqueous starch indicator (approximately 2% solution) | Mix 2 g of soluble starch with a little cold water until a smooth paste is obtained. Add 100 cm3 boiling water and stir. Boil until a clear solution is obtained (about 5 minutes).

Physics

Apparatus

As well as the general apparatus, you may also need the following for physics. The following suggested equipment has been categorised, but equipment can be used in any topic.

Mechanics
- expendable steel springs, with spring constant of approx. 0.25 N/cm
- force meter, with maximum reading or full scale deflection of between 1.0 N and 3.0 N
- G-clamp
- glass ball (marble), ball bearing (approx. 10 mm in diameter) and table tennis ball
- masses, 10×10 g, 10×100 g, including holders
- pendulum bob
- pivots (e.g. 15 cm nails, triangular wooden blocks)

Optics
- converging lens, spherical, $+6.7$ D ($f = 15$ cm)
- glass or Perspex 60° prism
- glass or Perspex blocks, rectangular and semicircular
- optics pins, minimum length 75 mm
- pin board
- plane mirror, approx. 75 mm \times 25 mm
- protractor

Electricity

Candidates or centres may need to join components, meters and cells together to make circuits. Connectors used will be 3.5 mm or 4 mm in diameter.

- ammeter, with full scale deflection 1 A or 1.5 A and precision of at least 0.05 A (analogue, dedicated digital or multimeter)
- cells, 1.5 V and holders to enable several cells to be joined
- connecting leads, 3.5 mm or 4 mm connectors
• crocodile clips
• d.c. power supply, variable to 12 V
• filament lamps, low voltage (e.g. 2.5 V) and holders
• filament lamp, 12 V, 24 W and holder
• switches
• selection of resistors, values within range 5–50 Ω, power rating of 1–2 W
• set square
• voltmeter, with full scale deflection 5 V and precision of at least 0.1 V (analogue, dedicated digital or multimeter)
• wire, constantan (eureka), 0.38 mm diameter (28 swg), 0.32 mm diameter (30 swg)
• wire, nichrome, 0.38 mm diameter (28 swg), 0.32 mm diameter (30 swg)
Safety in the laboratory

Teachers should make sure that they do not contravene any school, education authority or government regulations. Responsibility for safety matters rests with centres.

Further information can be found from the following UK associations, publications and regulations.

Associations
CLEAPSS is an advisory service providing support in practical science and technology.
www.cleapss.org.uk

Publications
CLEAPSS Laboratory Handbook, updated 2015 (available to CLEAPSS members only)
CLEAPSS Hazcards, 2019 update of 2016 edition (available to CLEAPSS members only)

UK regulations
Control of Substances Hazardous to Health Regulations (COSHH) 2002 and subsequent amendment in 2004

A brief guide may be found at
www.hse.gov.uk/pubns/indg136.pdf
Electrical symbols

- cell
- battery of cells
- switch
- earth or ground
- power supply
- junction of conductors
- d.c. power supply
- lamp
- a.c. power supply
- motor
- fixed resistor
- generator
- variable resistor
- ammeter
- heater
- voltmeter
- transformer
- light-emitting diode
- magnetising coil
- fuse
- electric bell
Symbols and units for physical quantities

Candidates should be able to give the symbols for the following physical quantities and, where indicated, state the units in which they are measured. The list for the Extended syllabus content includes both the Core and the Supplement.

All candidates should be able to use the following multipliers: M mega, k kilo, c centi, m milli. Extended candidates should also be able to use the following multipliers: G giga, μ micro, n nano.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Core</th>
<th></th>
<th></th>
<th>Supplement</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Usual symbol</td>
<td>Usual unit</td>
<td>Quantity</td>
<td>Usual symbol</td>
<td>Usual unit</td>
<td></td>
</tr>
<tr>
<td>length</td>
<td>l, h, d, s, x</td>
<td>km, m, cm, mm</td>
<td>mass</td>
<td>m, M</td>
<td>mg</td>
<td></td>
</tr>
<tr>
<td>area</td>
<td>A</td>
<td>m², cm²</td>
<td>time</td>
<td>t</td>
<td>ms, μs</td>
<td></td>
</tr>
<tr>
<td>volume</td>
<td>V</td>
<td>m³, cm³, dm³</td>
<td>density</td>
<td>p</td>
<td>g/cm³, kg/m³</td>
<td></td>
</tr>
<tr>
<td>weight</td>
<td>W</td>
<td>N</td>
<td>speed</td>
<td>u, v</td>
<td>km/h, m/s, cm/s</td>
<td></td>
</tr>
<tr>
<td>mass</td>
<td>m, M</td>
<td>kg, g</td>
<td>acceleration</td>
<td>a</td>
<td>m/s²</td>
<td></td>
</tr>
<tr>
<td>time</td>
<td>t</td>
<td>h, min, s</td>
<td>acceleration of free fall</td>
<td>g</td>
<td>m/s²</td>
<td></td>
</tr>
<tr>
<td>density</td>
<td>p</td>
<td>g/cm³, kg/m³</td>
<td>force</td>
<td>F</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>speed</td>
<td>u, v</td>
<td>km/h, m/s, cm/s</td>
<td>gravitational field strength</td>
<td>g</td>
<td>N/kg</td>
<td></td>
</tr>
<tr>
<td>acceleration</td>
<td>a</td>
<td>m/s²</td>
<td>spring constant</td>
<td>k</td>
<td>N/m, N/cm</td>
<td></td>
</tr>
<tr>
<td>momentum</td>
<td>p</td>
<td>kgm/s</td>
<td>impulse</td>
<td>N</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>work done</td>
<td>W</td>
<td>J, kJ, MJ</td>
<td>energy</td>
<td>E</td>
<td>J, kJ, MJ, kWh</td>
<td></td>
</tr>
<tr>
<td>energy</td>
<td>E</td>
<td>J, kJ, MJ, kWh</td>
<td>power</td>
<td>P</td>
<td>W, kW, MW</td>
<td></td>
</tr>
<tr>
<td>power</td>
<td>P</td>
<td>W, kW, MW</td>
<td>pressure</td>
<td>p</td>
<td>N/m², N/cm²</td>
<td></td>
</tr>
<tr>
<td>pressure</td>
<td>p</td>
<td>N/m², N/cm²</td>
<td>pressure</td>
<td>p</td>
<td>Pa</td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td>Supplement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity</td>
<td>Usual symbol</td>
<td>Usual unit</td>
<td>Quantity</td>
<td>Usual symbol</td>
<td>Usual unit</td>
<td></td>
</tr>
<tr>
<td>temperature</td>
<td>θ, T</td>
<td>°C, K</td>
<td>wavelength</td>
<td>λ</td>
<td>nm</td>
<td></td>
</tr>
<tr>
<td>frequency</td>
<td>f</td>
<td>Hz, kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wavelength</td>
<td>λ</td>
<td>m, cm</td>
<td>focal length</td>
<td>f</td>
<td>m, cm</td>
<td></td>
</tr>
<tr>
<td>angle of incidence</td>
<td>i</td>
<td>degree (°)</td>
<td>angle of reflection</td>
<td>r</td>
<td>degree (°)</td>
<td></td>
</tr>
<tr>
<td>angle of refraction</td>
<td>r</td>
<td>degree (°)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>critical angle</td>
<td>c</td>
<td>degree (°)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>refractive index</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>potential difference/voltage</td>
<td>V</td>
<td>V, mV, kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>current</td>
<td>I</td>
<td>A, mA</td>
<td>e.m.f.</td>
<td>E</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>resistance</td>
<td>R</td>
<td>Ω</td>
<td>charge</td>
<td>Q</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>count rate</td>
<td></td>
<td>counts/s, counts/minute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>half-life</td>
<td></td>
<td>s, minutes, h, days, weeks, years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes for use in qualitative analysis

Tests for anions

<table>
<thead>
<tr>
<th>anion</th>
<th>test</th>
<th>test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbonate, CO_3^{2-}</td>
<td>add dilute acid, then test for carbon dioxide gas</td>
<td>effervescence, carbon dioxide produced</td>
</tr>
<tr>
<td>chloride, Cl^- [in solution]</td>
<td>acidify with dilute nitric acid, then add aqueous silver nitrate</td>
<td>white ppt.</td>
</tr>
<tr>
<td>bromide, Br^- [in solution]</td>
<td>acidify with dilute nitric acid, then add aqueous silver nitrate</td>
<td>cream ppt.</td>
</tr>
<tr>
<td>iodide, I^- [in solution]</td>
<td>acidify with dilute nitric acid, then add aqueous silver nitrate</td>
<td>yellow ppt.</td>
</tr>
<tr>
<td>nitrate, NO_3^- [in solution]</td>
<td>add aqueous sodium hydroxide, then aluminium foil; warm carefully</td>
<td>ammonia produced</td>
</tr>
<tr>
<td>sulfate, SO_4^{2-} [in solution]</td>
<td>acidify with dilute nitric acid, then add aqueous barium nitrate</td>
<td>white ppt.</td>
</tr>
</tbody>
</table>

Tests for aqueous cations

<table>
<thead>
<tr>
<th>cation</th>
<th>effect of aqueous sodium hydroxide</th>
<th>effect of aqueous ammonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonium, NH_4^+</td>
<td>ammonia produced on warming</td>
<td>—</td>
</tr>
<tr>
<td>calcium, Ca^{2+}</td>
<td>white ppt., insoluble in excess</td>
<td>no ppt. or very slight white ppt.</td>
</tr>
<tr>
<td>copper(II), Cu^{2+}</td>
<td>light blue ppt., insoluble in excess</td>
<td>light blue ppt., soluble in excess, giving a dark blue solution</td>
</tr>
<tr>
<td>iron(II), Fe^{2+}</td>
<td>green ppt., insoluble in excess, ppt. turns brown near surface on standing</td>
<td>green ppt., insoluble in excess, ppt. turns brown near surface on standing</td>
</tr>
<tr>
<td>iron(III), Fe^{3+}</td>
<td>red-brown ppt., insoluble in excess</td>
<td>red-brown ppt., insoluble in excess</td>
</tr>
<tr>
<td>zinc, Zn^{2+}</td>
<td>white ppt., soluble in excess, giving a colourless solution</td>
<td>white ppt., soluble in excess, giving a colourless solution</td>
</tr>
</tbody>
</table>

Conventional abbreviations, such as ppt. for precipitate, may be used in the assessment.
Tests for gases

<table>
<thead>
<tr>
<th>gas</th>
<th>test and test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonia, NH$_3$</td>
<td>turns damp red litmus paper blue</td>
</tr>
<tr>
<td>carbon dioxide, CO$_2$</td>
<td>turns limewater milky</td>
</tr>
<tr>
<td>chlorine, Cl$_2$</td>
<td>bleaches damp litmus paper</td>
</tr>
<tr>
<td>hydrogen, H$_2$</td>
<td>'pops' with a lighted splint</td>
</tr>
<tr>
<td>oxygen, O$_2$</td>
<td>relights a glowing splint</td>
</tr>
</tbody>
</table>

Flame tests for metal ions

<table>
<thead>
<tr>
<th>metal ion</th>
<th>flame colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>lithium, Li$^+$</td>
<td>red</td>
</tr>
<tr>
<td>sodium, Na$^+$</td>
<td>yellow</td>
</tr>
<tr>
<td>potassium, K$^+$</td>
<td>lilac</td>
</tr>
<tr>
<td>copper(II), Cu$^{2+}$</td>
<td>blue-green</td>
</tr>
</tbody>
</table>
The periodic table of elements

<table>
<thead>
<tr>
<th>Group</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key</td>
<td></td>
<td></td>
<td>atomic number</td>
<td>atomic symbol</td>
<td>relative atomic mass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>20</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>22</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>24</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>26</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>28</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>30</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>32</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>34</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>36</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>38</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>40</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>42</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>44</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>46</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>48</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
<td>K</td>
<td>Ca</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>50</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>52</td>
<td>Br</td>
<td>Kr</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>54</td>
<td>Kr</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>Hf</td>
</tr>
</tbody>
</table>

- The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
Mathematical requirements

It is expected that these requirements will be covered as part of a mathematics curriculum at this level of study.

Calculators may be used in all parts of the examination.

Number

• add, subtract, multiply and divide
• use decimals, fractions, percentages, ratios and reciprocals
• convert between decimals, fractions and percentages
• calculate and use percentages and percentage change
• understand and use the symbols: =, <, >
• understand the meaning of sum, difference and product
• use standard form (scientific notation)
• understand that only the final answer in a calculation should be rounded
• use decimal places and significant figures appropriately
• make approximations and estimates to obtain reasonable answers

Algebra

• use positive, whole number indices in algebraic expressions
• substitute values of quantities into formulas, equations, using consistent units
• solve simple algebraic equations for any one term when the other terms are known
• recognise and use direct and inverse proportion
• set up simple algebraic equations as mathematical models of physical situations and to represent information given in words
• use Δ (delta) in algebraic expressions and equations to represent changes in a variable

Geometry and trigonometry

• apply Pythagoras’ theorem to the calculation of a side of a right-angled triangle
• convert between metric units, e.g. cm3, m3 and dm3; mg, g and kg; µm, mm, cm and m; J and kJ; Pa and kPa
• select and use the most appropriate units for recording data and the results of calculations
• recall and use the equation for the circumference of a circle
• recall and use the equations for the area of a rectangle, area of a triangle and area of a circle
• recall and use the equations for the volume of a rectangular block and volume of a cylinder
• recognise and use the points of the compass (N, S, E, W) and clockwise and anticlockwise directions
• make estimates of numbers, quantities and lengths
• understand surface area and use surface area : volume ratio
• use scale diagrams
• understand that a right angle is 90° and that the sum of the angles on a straight line is 180°
• understand the meaning of angle, curve, circle, radius, diameter, circumference, square, parallelogram, rectangle and diagonal
• use mathematical instruments (ruler, compasses, protractor, set square)
• use trigonometric functions (sine, cosine, tangent and their inverses) (Extended physics only)
Graphs, charts and statistics

- draw graphs and charts from data
- interpret line graphs, bar charts, pie charts and histograms with equal intervals
- interpolate and extrapolate from data
- determine the gradient (slope) of a line on a graph, including by drawing a tangent to a curved line
- determine the intercept of the line on a graph, extending the line graphically (extrapolating) where appropriate
- select suitable scales and axes for graphs
- recognise direct and inverse proportionality from a graph
- calculate and use the average (mean) for a set of data
- use simple probability
- understand that \(y = mx + c \) represents a linear relationship
- use and interpret Venn diagrams to show groupings and sets

Presentation of data

Taking readings

- Data values should be read from an instrument or from a diagram of an instrument to an accuracy of one half of one of the smallest divisions on the scale.
- Interpolation between scale divisions should be to an accuracy of one half of a division. That is, where a reading lies between two scale marks, it should be interpolated to the nearest half division.

Recording readings

- Data should be recorded so as to reflect the precision of the measuring instrument, i.e. the smallest difference that can reliably be detected on the measuring instrument scale should be reflected by the number of decimal places and unit given in the measurement.
- A measurement or calculated quantity must be accompanied by a correct unit, where appropriate.
- Each column of a table should be headed with the name or symbol of the measured or calculated quantity and the appropriate unit, e.g. time / s. The solidus (/) is to be used for separating the quantity and the unit in tables, graphs and charts.
- Units should not be included with data in the body of a table.
- Each reading should be repeated, where appropriate, and recorded.
- The number of significant figures given for measured quantities should be appropriate to the measuring instrument used.
- The number of significant figures given for calculated quantities should be the same as the least number of significant figures in the raw data used in that specific calculation.
- A ratio should be expressed as \(x : y \).
Drawing and analysing graphs

- The column headings of a table can be directly transferred to the axes of a constructed graph.
- A graph should be drawn with a sharp pencil.
- The axes should be labelled with the observation or name or symbol of the measured or calculated quantity and the appropriate unit, e.g. time/s.
- Unless instructed otherwise, the independent variable should be plotted on the x-axis (horizontal axis) and the dependent variable plotted on the y-axis (vertical axis).
- Unless instructed otherwise, the scales for the axes should allow more than half of the graph grid to be used in both directions, and be based on sensible ratios, e.g. 2 cm on the graph grid representing 1, 2 or 5 units of the variable (or 10, 20 or 50, etc.). The axes do not have to include (0, 0).
- Points on the graph should be clearly marked as plus signs (+), crosses (×) or encircled dots (⊙) of appropriate size.
- Each data point should be plotted to an accuracy of one half of one of the smallest squares on the grid.
- A best-fit line (trend line) should be a single, thin, smooth straight-line or curve, drawn by inspection. Mathematical or least-squares method of obtaining a best-fit line are not required. The line does not need to coincide exactly with any of the points; where there is scatter evident in the data, examiners would expect a roughly even distribution of points either side of the line over its entire length. Points that are clearly anomalous and identified by the candidate should be ignored when drawing the best-fit line.
- A best-fit line or curve should only be drawn if there is good reason to believe that the intermediate values can be predicted.
- Candidates should be able to take readings from the graph by extrapolation or interpolation and indicate on the graph how they determined the reading.
- Data values should be read from a line on a graph to an accuracy of one half of one of the smallest squares on the grid. The same accuracy should be used in reading off an intercept.
- The gradient of a straight line should be taken using a triangle whose hypotenuse extends over at least half the length of the candidate's best-fit line, and this triangle should be marked on the graph.
- Calculation of the gradient should be to two or three significant figures.
- When the gradient or intercept of a graph is used in subsequent calculations, it will be assumed to have units consistent with the graph axes.

Drawings

- Drawings should be drawn using a sharp pencil to give fine lines that are clear and unbroken.
- Drawings should use most of the available space and show all the features observed in the specimen, with no shading or use of colour.
- Label lines should be drawn with a ruler and touch the object or feature labelled.

Charts

- Pie charts are generally used to show percentage or proportionality.
- Bar charts should be drawn for categorical or discrete data. They should be made up of bars of equal width that do not touch.
- Histograms should be drawn for continuous data. They should have bars that touch.

Further guidance can be found in the following publications:
www.ase.org.uk/mathsinscience
Conventions (e.g. signs, symbols, terminology and nomenclature)

Candidates are expected to be familiar with the nomenclature in the syllabus.

The syllabuses and question papers conform with generally accepted international practice. In particular, the following document, produced by the Association for Science Education (ASE), should be used as a guideline.

Signs, Symbols and Systematics: The ASE Companion to 16–19 Science (2000).

The traditional names sulfate, nitrate, sulfuric acid and nitric acid will be used in question papers. Candidates will be credited for traditional or systematic names in their answers, except when specifically asked to use oxidation numbers to deduce or understand systematic names.

Decimal markers

In accordance with current ASE convention, decimal markers in examination papers will be a single dot on the line. Candidates are expected to follow this convention in their answers.

Numbers

Numbers from 1000 to 9999 will be printed without commas or spaces. Numbers greater than or equal to 10,000 will be printed without commas. A space will be left between each group of three digits, e.g. 4,256,789.

Variables

Independent variables are the variables that are changed in a scientific experiment by the scientist. Changing an independent variable may cause a change in the dependent variable.

Dependent variables are the variables that are observed or measured in a scientific experiment. Dependent variables may change based on changes made to the independent variables.

Units

To avoid any confusion concerning the symbol for litre, the equivalent quantity, the cubic decimetre (dm³) will be used in place of l or litre.

In practical work, candidates will be expected to use SI units or, where appropriate, units approved by the BIPM for use with the SI (e.g. minute). A list of SI units and units approved for use with the SI may be found in the SI brochure at www.bipm.org. The use of imperial/customary units such as the inch and degree Fahrenheit are not acceptable and should be discouraged.

In all examinations, where data is supplied for use in questions, candidates will be expected to use units that are consistent with the units supplied and should not attempt conversion to other systems of units unless this is a requirement of the question.
Command words

Command words and their meanings help candidates know what is expected from them in the exams. The table below includes command words used in the assessment for this syllabus. The use of the command word will relate to the subject context.

<table>
<thead>
<tr>
<th>Command word</th>
<th>What it means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse</td>
<td>examine in detail to show meaning, identify elements and the relationship between them</td>
</tr>
<tr>
<td>Calculate</td>
<td>work out from given facts, figures or information</td>
</tr>
<tr>
<td>Comment</td>
<td>give an informed opinion</td>
</tr>
<tr>
<td>Compare</td>
<td>identify/comment on similarities and/or differences</td>
</tr>
<tr>
<td>Consider</td>
<td>review and respond to given information</td>
</tr>
<tr>
<td>Contrast</td>
<td>identify/comment on differences</td>
</tr>
<tr>
<td>Deduce</td>
<td>conclude from available information</td>
</tr>
<tr>
<td>Define</td>
<td>give precise meaning</td>
</tr>
<tr>
<td>Demonstrate</td>
<td>show how or give an example</td>
</tr>
<tr>
<td>Describe</td>
<td>state the points of a topic / give characteristics and main features</td>
</tr>
<tr>
<td>Determine</td>
<td>establish an answer using the information available</td>
</tr>
<tr>
<td>Discuss</td>
<td>write about issue(s) or topic(s) in depth in a structured way</td>
</tr>
<tr>
<td>Evaluate</td>
<td>judge or calculate the quality, importance, amount, or value of something</td>
</tr>
<tr>
<td>Examine</td>
<td>investigate closely, in detail</td>
</tr>
<tr>
<td>Explain</td>
<td>set out purposes or reasons / make the relationships between things clear / say why and/or how and support with relevant evidence</td>
</tr>
<tr>
<td>Give</td>
<td>produce an answer from a given source or recall/memory</td>
</tr>
<tr>
<td>Identify</td>
<td>name/select/recognise</td>
</tr>
<tr>
<td>Justify</td>
<td>support a case with evidence/argument</td>
</tr>
<tr>
<td>Outline</td>
<td>set out the main points</td>
</tr>
<tr>
<td>Predict</td>
<td>suggest what may happen based on available information</td>
</tr>
<tr>
<td>Show (that)</td>
<td>provide structured evidence that leads to a given result</td>
</tr>
<tr>
<td>Sketch</td>
<td>make a simple freehand drawing showing the key features, taking care over proportions</td>
</tr>
<tr>
<td>State</td>
<td>express in clear terms</td>
</tr>
<tr>
<td>Suggest</td>
<td>apply knowledge and understanding to situations where there are a range of valid responses in order to make proposals / put forward considerations</td>
</tr>
</tbody>
</table>
5 What else you need to know

This section is an overview of other information you need to know about this syllabus. It will help to share the administrative information with your exams officer so they know when you will need their support. Find more information about our administrative processes at www.cambridgeinternational.org/eoguide

Before you start

Previous study

We recommend that learners starting this course should have studied a science curriculum such as the Cambridge Lower Secondary programme or equivalent national educational framework.

Guided learning hours

We design Cambridge IGCSE syllabuses to require about 260 guided learning hours for each double award subject. This is for guidance only. The number of hours a learner needs to achieve the qualification may vary according to each school and the learners' previous experience of the subject.

Availability and timetables

All Cambridge schools are allocated to one of six administrative zones. Each zone has a specific timetable.

This syllabus is not available in all administrative zones. To find out about availability check the syllabus page at www.cambridgeinternational.org/0973

You can view the timetable for your administrative zone at www.cambridgeinternational.org/timetables

You can enter candidates in the June and November exam series.

Check you are using the syllabus for the year the candidate is taking the exam.

Private candidates can enter for this syllabus. For more information, please refer to the Cambridge Guide to Making Entries.
Combining with other syllabuses

Candidates can take this syllabus alongside other Cambridge International syllabuses in a single exam series. The only exceptions are:

- Cambridge IGCSE Biology (0610)
- Cambridge IGCSE (9–1) Biology (0970)
- Cambridge IGCSE Chemistry (0620)
- Cambridge IGCSE (9–1) Chemistry (0971)
- Cambridge IGCSE Physics (0625)
- Cambridge IGCSE (9–1) Physics (0972)
- Cambridge IGCSE Combined Science (0653)
- Cambridge IGCSE Co-ordinated Sciences (Double Award) (0654)
- Cambridge IGCSE Physical Science (0652)
- Cambridge O Level Physics (5054)
- Cambridge O Level Chemistry (5070)
- Cambridge O Level Biology (5090)
- Cambridge O Level Combined Science (5129)
- syllabuses with the same title at the same level.

Cambridge IGCSE, Cambridge IGCSE (9–1) and Cambridge O Level syllabuses are at the same level.

Making entries

Exams officers are responsible for submitting entries to Cambridge International. We encourage them to work closely with you to make sure they enter the right number of candidates for the right combination of syllabus components. Entry option codes and instructions for submitting entries are in the Cambridge Guide to Making Entries. Your exams officer has a copy of this guide.

Exam administration

To keep our exams secure, we produce question papers for different areas of the world, known as administrative zones. We allocate all Cambridge schools to an administrative zone determined by their location. Each zone has a specific timetable. Some of our syllabuses offer candidates different assessment options. An entry option code is used to identify the components the candidate will take relevant to the administrative zone and the available assessment options.

Support for exams officers

We know how important exams officers are to the successful running of exams. We provide them with the support they need to make your entries on time. Your exams officer will find this support, and guidance for all other phases of the Cambridge Exams Cycle, at www.cambridgeinternational.org/eoguide

Retakes

Candidates can retake the whole qualification as many times as they want to. Information on retake entries is at www.cambridgeinternational.org/retakes

Language

This syllabus and the related assessment materials are available in English only.
Accessibility and equality

Syllabus and assessment design

Cambridge International works to avoid direct or indirect discrimination. We develop and design syllabuses and assessment materials to maximise inclusivity for candidates of all national, cultural or social backgrounds and candidates with protected characteristics; these protected characteristics include special educational needs and disability, religion and belief, and characteristics related to gender and identity. In addition, the language and layout used are designed to make our materials as accessible as possible. This gives all candidates the fairest possible opportunity to demonstrate their knowledge, skills and understanding and helps to minimise the requirement to make reasonable adjustments during the assessment process.

Access arrangements

Access arrangements (including modified papers) are the principal way in which Cambridge International complies with our duty, as guided by the UK Equality Act (2010), to make ‘reasonable adjustments’ for candidates with special educational needs (SEN), disability, illness or injury. Where a candidate would otherwise be at a substantial disadvantage in comparison to a candidate with no SEN, disability, illness or injury, we may be able to agree pre-examination access arrangements. These arrangements help a candidate by minimising accessibility barriers and maximising their opportunity to demonstrate their knowledge, skills and understanding in an assessment.

Important:

• Requested access arrangements should be based on evidence of the candidate’s barrier to assessment and should also reflect their normal way of working at school; this is in line with the Cambridge Handbook www.cambridgeinternational.org/eoguide

• For Cambridge International to approve an access arrangement, we will need to agree that it constitutes a reasonable adjustment, involves reasonable cost and timeframe and does not affect the security and integrity of the assessment.

• Availability of access arrangements should be checked by centres at the start of the course. Details of our standard access arrangements and modified question papers are available in the Cambridge Handbook www.cambridgeinternational.org/eoguide

• Please contact us at the start of the course to find out if we are able to approve an arrangement that is not included in the list of standard access arrangements.

• Candidates who cannot access parts of the assessment may be able to receive an award based on the parts they have completed.
After the exam

Grading and reporting
Grades 9-9, 8-8, 7-7, 6-6, 5-5, 4-4, 3-3, 2-2 or 1-1 indicate the standard a candidate achieved at Cambridge IGCSE (9–1).

9-9 is the highest and 1-1 is the lowest. ‘Ungraded’ means that the candidate’s performance did not meet the standard required for grade 1-1. ‘Ungraded’ is reported on the statement of results but not on the certificate.

In specific circumstances your candidates may see one of the following letters on their statement of results:

- Q (PENDING)
- X (NO RESULT).

These letters do not appear on the certificate.

On the statement of results and certificates, Cambridge IGCSE is shown as INTERNATIONAL GENERAL CERTIFICATE OF SECONDARY EDUCATION (IGCSE).

How students and teachers can use the grades
Assessment at Cambridge IGCSE has two purposes:

1. to measure learning and achievement
 The assessment confirms achievement and performance in relation to the knowledge, understanding and skills specified in the syllabus, to the levels described in the grade descriptions.

2. to show likely future success
 The outcomes help predict which students are well prepared for a particular course or career and/or which students are more likely to be successful.
 The outcomes help students choose the most suitable course or career.

Grade descriptions
Grade descriptions are provided to give an indication of the standards of achievement candidates awarded particular grades are likely to show. Weakness in one aspect of the examination may be balanced by a better performance in some other aspect.

Grade descriptions for Cambridge IGCSE (9–1) Co-ordinated Sciences (Double Award) will be published after the first assessment of the syllabus in 2025.
Changes to this syllabus for 2025, 2026 and 2027

The syllabus has been reviewed and revised for first examination in 2025.

You must read the whole syllabus before planning your teaching programme.

Changes to syllabus content

- Learner attributes have been introduced.
- The content has been refreshed and updated. Some topics and learning outcomes have been removed and some topics have been added.
- Topics added:
 - Reference to bacterial cells
 - Active transport
 - Diseases and immunity
 - Drugs
 - Conservation
 - Hydrogen-oxygen fuel cells
 - Acid-base titrations
 - Dispersion of light
 - Space Physics
- Topics removed:
 - Teeth and villi
 - Smoking
 - Anaerobic respiration in yeast
 - Pregnancy and placenta
 - Sense organs
 - Tropic responses
 - Evolution
 - Nitrogen and fertilisers
 - Sulfur
 - Carbonates
 - Measurement of temperature
- The value for gravity used in this syllabus is now 9.8 N/kg.
- The teaching time still falls within the recommended guided learning hours.
- The Language of Measurement has been included.
- The Details of the assessment section has been updated and further explanation has been provided. This includes revisions to the apparatus list, mathematical requirements, electrical symbols, symbols and units for physical quantities and the presentation of data.
- The practical assessment and mathematical requirements have been updated.
- A list of command words used in the assessments has been included and replaces the previous glossary of terms used in science papers.
Changes to syllabus content (continued)

- These changes to the Practical Assessment section have been included to improve clarity for teaching and help learners understand the requirements of the course. This section has been aligned across the IGCSE Science suite to provide consistency.

Changes to assessment (including changes to specimen papers)

- The syllabus aims have been updated to improve the clarity of wording and the consistency between IGCSE Cambridge science subjects.
- The wording of the assessment objectives (AOs) has been updated to ensure consistency across IGCSE Cambridge science subjects.
- Assessment objectives AO1, AO2 and AO3 still test the same knowledge and skills as previously.
- The **Notes for use in qualitative analysis** will be provided in both Paper 5 and Paper 6.
- The wording ‘Take the weight of 1.0 kg to be 9.8 N (acceleration of free fall = 9.8 m/s²)’ has been added to the front cover of Paper 1, 2, 3 and 4.

In addition to reading the syllabus, you should refer to the updated specimen assessment materials. The specimen papers will help your students become familiar with exam requirements and command words in questions. The specimen mark schemes show how students should answer questions to meet the assessment objectives.
School feedback: ‘While studying Cambridge IGCSE and Cambridge International A Levels, students broaden their horizons through a global perspective and develop a lasting passion for learning.’

Feedback from: Zhai Xiaoning, Deputy Principal, The High School Affiliated to Renmin University of China