Cambridge IGCSE ${ }^{\text {TM }}$

You must answer on the question paper.
No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a graphic display calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly, including sketches, to gain full marks for correct methods.
- In this paper you will be awarded marks for providing full reasons, examples and steps in your working to communicate your mathematics clearly and precisely.

INFORMATION

- The total mark for this paper is 40.
- The number of marks for each question or part question is shown in brackets [].

INVESTIGATION PICK'S FORMULA

This investigation is about working out the area of a polygon.
In 1899 the Austrian mathematician Georg Pick found a method to work out the area, A, of any polygon that has its vertices (corners) on a square grid.

His method used the number of dots, p, on the perimeter of the polygon and the number of dots, i, inside the polygon.

In the polygon shown, $p=7$ and $i=4$.

1 The diagram shows the first three rectangles of a sequence with $i=0$.

The second rectangle has $p=6$. Its area, A, is 2 squares.
(a) Complete the table for the first six rectangles in the sequence.

	Rectangle						
	first	second	third	fourth	fifth	sixth	
p		6				14	
$\frac{1}{2} p$		3				7	
A		2				6	

(b) Write down a formula for A in terms of p.

2 The diagram shows the first three triangles of a sequence with $p=4$.

The third triangle has $i=2$.
Its area $A=\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times 2 \times 3=3$ squares.
(a) Find the area of the first two triangles in the sequence.

First triangle \qquad

Second triangle \qquad
(b) Complete the table for the first six triangles in the sequence.

	Triangle						
	first	second	third	fourth	fifth	sixth	
i			2				
A			3				

(c) Write down a formula for A in terms of i.

3 Your answers to Question 1(b) and Question 2(c) show that the area, A, of a polygon relates to $\frac{1}{2} p$ and also to i.

The diagram shows polygons Q, R, S, T and U.

(a) Complete the table.

	Polygon					
	Q	R	S	T	U	
$\frac{1}{2} p$		8	9		4.5	
i		3	6	2		
$\frac{1}{2} p+i$	7			11	8.5	
A	6				7.5	

(b) Write a formula for A in terms of p and i.

4 The answer to Question 3(b) is Pick's formula.
Show that Pick's formula gives the correct value for the area of this polygon.

5 Use Pick's formula to find the area of this polygon.

6 The area of triangle G is 3 squares.
There are 6 dots on the perimeter of the triangle.
(a) Use Pick's formula to find the number of dots inside triangle G.
(b) Use your answer to part (a) to draw triangle G.

7 The area of quadrilateral H is 4 squares. There are 2 dots inside the quadrilateral.
(a) Use Pick's formula to find the number of dots on the perimeter of quadrilateral H.
(b) Use your answer to part (a) to draw quadrilateral H.

Question 8 is printed on the next page.

8 (a) For any polygon, give the reason why the value of p is greater than 2.
(b) What is true about the value of p when A is a positive integer?
\qquad
(c) The area, A, of a polygon is 2 squares.

Use Pick's formula to find all the possible pairs of values for p and i.

