

Notation List

For Cambridge International Mathematics Qualifications

For use from 2020

Mathematical notation

Examinations for CIE syllabuses may use relevant notation from the following list.

1 Set notation

\in	is an element of
∉	is not an element of
$\{x_1, x_2,\}$	the set with elements x_1, x_2, \ldots
$\{x:\ldots\}$	the set of all x such that
n(A)	the number of elements in set A
Ø	the empty set
E	the universal set
U	the universal set (for 0607 IGCSE International Mathematics)
A'	the complement of the set A
N	the set of natural numbers, $\{1, 2, 3,\}$
Z	the set of integers, $\{0, \pm 1, \pm 2, \pm 3, \ldots\}$
Q	the set of rational numbers, $\left\{\frac{p}{q}: p, q \in \mathbb{Z}, q \neq 0\right\}$
\mathbb{R}	the set of real numbers
\mathbb{C}	the set of complex numbers
(x, y)	the ordered pair x, y
⊆	is a subset of
С	is a proper subset of
U	union
Π	intersection
[<i>a</i> , <i>b</i>]	the closed interval $\{x \in \mathbb{R} : a \leq x \leq b\}$
[a, b)	the interval $\{x \in \mathbb{R} : a \leq x \leq b\}$
(<i>a</i> , <i>b</i>]	the interval $\{x \in \mathbb{R} : a \le x \le b\}$
(<i>a</i> , <i>b</i>)	the open interval $\{x \in \mathbb{R} : a \le x \le b\}$
(S, \circ)	the group consisting of the set S with binary operation \circ

2 Miscellaneous symbols

=	is equal to
\neq	is not equal to
≡	is identical to or is congruent to
\approx	is approximately equal to
~	is distributed as
≅	is isomorphic to
x	is proportional to
<	is less than
≤	is less than or equal to
>	is greater than
≥	is greater than or equal to
∞	infinity
\Rightarrow	implies
\Leftarrow	is implied by
\Leftrightarrow	implies and is implied by (is equivalent to)

3 Operations

a + b a - b $a \times b, ab$ $a \div b, \frac{a}{b}$	a plus b a minus b a multiplied by b a divided by b
$\sum_{i=1}^{n} a_i$	$a_1 + a_2 + \ldots + a_n$
$\sqrt[r-1]{a}$	the non-negative square root of <i>a</i> , for $a \in \mathbb{R}$, $a \ge 0$
$\sqrt[n]{a}$	the (real) <i>n</i> th root of <i>a</i> , for $a \in \mathbb{R}$, where $\sqrt[n]{a} \ge 0$ for $a \ge 0$ the modulus of <i>a</i> .
n!	<i>n</i> factorial
$\binom{n}{r}$	the binomial coefficient $\frac{n!}{r!(n-r)!}$ for $n, r \in \mathbb{Z}$ and $0 \leq r \leq n$

4 Functions

f(x)	the value of the function f at x
$f: A \to B$	f is a function under which each element of set A has an image in set B
$f: x \mapsto y$	the function f maps the element x to the element y
f^{-1}	the inverse function of the one-one function f
gf	the composite function of f and g which is defined by $gf(x) = g(f(x))$
$\lim_{x \to a} \mathbf{f}(x)$	the limit of $f(x)$ as x tends to a
$\Delta x, \delta x$	an increment of x
$\frac{\mathrm{d}y}{\mathrm{d}x}$	the derivative of y with respect to x
$\frac{\mathrm{d}^n y}{\mathrm{d} x^n}$	the <i>n</i> th derivative of y with respect to x
$f'(x), f''(x),, f^{(n)}(x)$	the first, second,, <i>n</i> th derivatives of $f(x)$ with respect to x
$\int y \mathrm{d}x$	the indefinite integral of y with respect to x
$\int_{a}^{b} y \mathrm{d}x$	the definite integral of y with respect to x between the limits $x = a$ and $x = b$
$\dot{x}, \ddot{x}, \ldots$	the first, second, derivatives of x with respect to t

5 Exponential and logarithmic functions

e	base of natural logarithms
e^x , $exp(x)$	exponential function of x
$\log_a x$	logarithm to the base a of x
$\ln x$	natural logarithm of x
$\lg x$, $\log_{10} x$	logarithm of x to base 10

6 Circular and hyperbolic functions

sin, cos, tan) cosec, sec, cot)	the circular functions
$\sin^{-1}, \cos^{-1}, \tan^{-1}$ $\csc^{-1}, \sec^{-1}, \cot^{-1}$	the inverse circular functions
sinh, cosh, tanh cosech, sech, coth)	the hyperbolic functions
\sinh^{-1} , \cosh^{-1} , \tanh^{-1} cosech ⁻¹ , sech ⁻¹ , \coth^{-1}	the inverse hyperbolic functions

7 Complex numbers

i	the imaginary unit, $i^2 = -1$
Ζ	a complex number, $z = x + iy = r(\cos \theta + i \sin \theta)$
Re z	the real part of z, $\operatorname{Re} z = x$
Im z	the imaginary part of z, $\text{Im } z = y$
<i>z</i>	the modulus of z, $ z = \sqrt{x^2 + y^2}$
arg z	the argument of z, arg $z = \theta$ where $-\pi < \theta \leq \pi$
Z*	the complex conjugate of z , $x - iy$

8 Matrices

Μ	a matrix M
\mathbf{M}^{-1}	the inverse of the non-singular square matrix M
det M, M	the determinant of the square matrix M
Ι	an identity (or unit) matrix

9 Vectors

a	the vector a
ĀB	the vector represented in magnitude and direction by the directed line segment AB
â	a unit vector in the direction of a
i, j, k	unit vectors in the directions of the Cartesian coordinate axes
$\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x \\ y \\ z \end{pmatrix}$	the vectors $x\mathbf{i} + y\mathbf{j}$ (in 2 dimensions) and $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ (in 3 dimensions)
a , a	the magnitude of a
$\left \overline{AB}\right , AB$	the magnitude of \overline{AB}
a.b a × b	the scalar product of a and b the vector product of a and b

10 Probability and statistics

<i>A</i> , <i>B</i> , <i>C</i> ,	events
$A \cup B$	union of the events A and B
$A \cap B$	intersection of the events A and B
P(A)	probability of the event A
A'	complement of the event A
$P(A \mid B)$	probability of the event A conditional on the event B
${}^{n}C_{r}$	the number of combinations of <i>r</i> objects from <i>n</i> , ${}^{n}C_{r} = {n \choose r} = \frac{n!}{r!(n-r)!}$
ⁿ P _r	the number of permutations of <i>r</i> objects from <i>n</i> , ${}^{n}P_{r} = \frac{n!}{(n-r)!}$
X, Y, R,	random variables
<i>x</i> , <i>y</i> , <i>r</i> ,	values of the random variables X, Y, R,
x_1, x_2, \ldots	observations
f_1, f_2, \ldots	frequencies with which the observations x_1, x_2, \dots occur
$\mathbf{p}(\mathbf{x})$	probability function $P(X = x)$ of the discrete random variable X
p_1, p_2, \dots	probabilities of the values x_1, x_2, \ldots of the discrete random variable X
f(x)	value of the probability density function of a continuous random variable X
F(x)	value of the cumulative distribution function of a continuous random variable X
E(X)	expectation of the random variable X
E(g(X))	expectation of $g(X)$
Var(X)	variance of the random variable X
$G_X(t)$	probability generating function for the discrete random variable X
$M_X(t)$	moment generating function for the random variable X
B(n, p)	binomial distribution with parameters <i>n</i> and <i>p</i>
Geo(p)	geometric distribution with parameter <i>p</i>
$Po(\lambda)$	Poisson distribution with parameter λ
$N(\mu, \sigma^2)$	normal distribution with mean μ and variance σ^2
μ	population mean
σ^2	population variance
σ	population standard deviation
\overline{x}	sample mean, $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
s ²	unbiased estimate of population variance from a sample, $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$
ρ	product moment correlation coefficient for a population
r	product moment correlation coefficient for a sample
φ	probability density function of the standardised normal variable $Z \sim N(0, 1)$
Φ	cumulative distribution function of the standardised normal variable $Z \sim N(0, 1)$
H ₀ , H ₁	null and alternative hypotheses for a hypothesis test