

Using multiple choice questions to identify student misconceptions

Hannah Francis Group Manager

15th September 2019

Using multiple choice questions

Purpose:

- To gain an insight into the writing of multiple choice questions
- Learn how to use statistical evidence to reveal areas of misconception and error
- Explore how to use multiple choice questions in the classroom to identify and address specific areas for development

Writing multiple choice questions

Why multiple choice questions?

- In summative assessment:
 - For wide syllabus coverage
 - Contribute to reliability
 - Quick and easy to mark electronically
 - Easy to create similar but different questions (sibling items)
- In formative assessment
 - To reinforce learning
 - To identify misconceptions
 - Easy to create sibling items to re-test misconceptions
 - Quick and easy to mark

Jargon

Term Meaning

Item everything: stem, question and options

Stem the material preceding the question

Question the question itself (the sentence ending with '?')

Options the choices A, B, C, D

Key the correct option

Distractor an incorrect option

The circuit of a motor racing track is 3.0 km in length. In a race, a car goes 25 times round the circuit in

30 minutes.

What is the average speed of the car?

A 75 km / hour **B** 90 km / hour **C** 150 km / hour **D** 750 km / hour

Jargon

Sibling – a closely related item

The circuit of a motor racing track is 3.0 km in length. In a race, a car goes 25 times round the circuit in

30 minutes

What is the average speed of the car?

A 75 km / hour **B** 90 km / hour

C 150 km / hour **D** 750 km / hour

The circuit of a motor racing track is 7.0 km in length. In a race, a car goes 12 times round the circuit

in 36 minutes.

What is the average speed of the car?

A 84 km / hour **B** 252 km / hour **C** 140 km / hour **D** 432 km / hour

What makes a good multiple choice item?

- There is a unique correct answer that is on syllabus
- The key is correct no matter how much science is known beyond the syllabus
- All options are plausible
- All distractors are on syllabus
- It is neither too easy nor too difficult
- The language is clear and technical terms are on the syllabus
- There is no trickery, or gender, racial or cultural bias of any kind

Distractors – non-calculation questions

 Distractors for non-calculation items are all reasonable choices given incomplete knowledge

When dilute sulfuric acid is electrolysed using inert electrodes, two gases are produced.

What are these two gases?

- A hydrogen and oxygen
- **B** hydrogen and sulfate
- C hydrogen and sulfur dioxide
- D oxygen and sulfur dioxide

Distractors – calculation questions

Distractors for calculations can all be reached using the data given, ideally with just one mistake in the process

A 2.0 g sample of sodium chloride is dissolved in water to give a solution of volume 80 cm³.

What is the concentration of this solution in g/dm³?

A

B 25

C

D

Key:
$$80 \div 1000 = 0.08 \text{ dm}^3$$

$$2.0 \div 0.08 = 25 \text{ g/dm}^3$$

- What could be good distractors?
 - not converting to $dm^3 = 0.025$ (g/cm³)
 - fraction wrong way up = 0.04 (dm³/g)
 - multiplying instead of dividing = 0.16 (g dm³)

Distractors – calculation questions

A 2.0 g sample of sodium chloride is dissolved in water to give a solution of volume 80 cm³.

What is the concentration of this solution in g/dm³?

A

B 25

C

D

- Other possible distractors
 - not converting to dm^3 and wrong way up = 40 (cm³/g)
 - multiplying $80 \times 2 = 160$
 - adding 80 + 2 = 82
 - random answer e.g. 33

Distractors – calculation questions

Distractors for calculations can all be reached using the data given, ideally with just one mistake in the process

The potential difference across a resistor is 6.0 V, and the current in it is 3.0 A. What is the resistance

of the resistor?

A 0.50Ω **B** 2.0Ω

C 9.0 Ω

D 18 O

- Ohm's Law: $V = I \times R$
- where V is voltage, I is current in amperes (A) and R is the resistance in ohms (Ω)
- Rearrange: $R = V \div I = 6.0 \div 3.0 = 2.0 \Omega$

Statistics – item facility

- Facility = the proportion of students that answered correctly
- ▶ Target range is 0.25 0.80
- An extremely high value indicates the question is too easy
- An extremely low value indicates the question is too hard
- ▶ 0.25 is the "guessing rate" in a four-option question

Proportion endorsing = the proportion choosing each option

The diagram shows a ray of light striking a plane mirror.

What is the angle of reflection?

A 20°

B 40°

C 70°

D 140°

- Look at the proportion of candidates in the upper 27% of the test score distribution who gave the correct answer to the item, and the same proportion in the lowest 27% group.
- Should find that the proportion endorsing the key is greater for the stronger group than for the weaker group
- AND the proportion endorsing for the distractors is greater for the weaker group than for the stronger group

Statistics for the question:

Proportion correct	Option	Proportion endorsing			Key
		All	Low	High	
0.36	Α	0.56	0.63	0.40	
	В	0.03	0.06	0.01	
	С	0.36	0.25	0.57	*
	D	0.04	0.06	0.02	

PE report: This question on reflection of light proved challenging. The majority of candidates chose option **A**; it should be noted that the angle of reflection is always measured between the ray and the normal.

Using the statistics

- Use the facility to identify which topics are generally well understood and which are less well understood
- Use the proportion endorsing to identify specific misconceptions and identify which topics weaker candidates struggle with

Using multiple choice questions in the classroom

Use in the classroom

- At the beginning of the topic to assess prior knowledge
- During a topic to assess progress
- During a lesson to check understanding
- As homework
- At the end of a topic to plan targeted revision

Sources of questions

- Past papers
- Test-maker
- Text books
- Online
- Write your own

Writing multiple choice questions - tips

- Keep notes of ideas as teaching
- Identify topic/learning outcome to test
- Start by writing a question with correct answer
- Consider distractors to test common misconceptions/mistakes
- Ask someone else to review

Summary

Using multiple choice questions

Outcomes:

- Gained an insight into the writing of multiple choice questions
- Learned how to use statistical evidence to reveal areas of misconception and error
- Explored how to use multiple choice questions in the classroom to identify and address specific areas for development

Assessment

We recognise that assessment has two important roles: to prove and improve – to prove what students are learning, and to suggest how they can improve their understanding and skills.

Thank you Any questions?

Learn more! Getting in touch with Cambridge is easy

Email info@cambridgeinternational.org or telephone +44 1223 553554

